[1] "Search CASE_STATUS for CERTIFIED" [1] "Group by EMPLOYER_NAME2" [1] "" [1] "H-1B DISCLOSURE DATA, FY 2020" [1] "(CASE_STATUS=CERTIFIED)" [1] "" [1] "SUM(TOTAL_WORKERS) = 426,203" [1] "SUM(APPLICATIONS) = 257,283" [1] "NUMBER OF ROWS = 38,382" [1] "MEDIAN(LOW_WAGE) = NULL" [1] "MEAN(LOW_WAGE) = NA" [1] "" EMPLOYER_NAME2 WORKERS APPLICATIONS 1 GOOGLE 7158 7053 2 COGNIZANT TECHNOLOGY SOLUTIONS US 5521 5521 3 ERNST & YOUNG U.S 5113 5113 4 AMAZON.COM 5467 4783 5 MICROSOFT 4564 4414 6 DELOITTE CONSULTING 9071 4273 7 APPLE 6888 2908 8 FACEBOOK 6594 2519 9 WAL-MART ASSOCIATES 1586 1586 10 ANTHEM 1583 1496 11 WELLS FARGO 1583 1467 12 JPMORGAN CHASE 1613 1462 13 SALESFORCE.COM 1528 1316 14 AMERICAN EXPRESS 1276 1124 15 CAPITAL ONE 1176 1119 16 CISCO SYSTEMS 6274 1116 17 INTERNATIONAL BUSINESS MACHINES 1027 1027 18 FORD MOTOR 1334 923 19 GOLDMAN SACHS 914 909 20 DELOITTE & TOUCHE 2741 893 21 AT&T 986 879 22 AMAZON WEB 874 852 23 VERIZON 932 807 24 INTEL 2036 778 25 LINKEDIN 1022 755 26 PAYPAL 1027 731 27 VMWARE 814 728 28 BANK OF AMERICA 677 658 29 CITIGROUP 668 644 30 INFOSYS 861 631 31 BANK OF AMERICA N.A 675 630 32 CHARTER COMMUNICATIONS 708 612 33 EBAY 722 577 34 BLACKROCK FINANCIAL MANAGEMENT 559 559 35 IBM 514 514 36 FANNIE MAE 675 508 37 WALMART 617 486 38 CVS HEALTH 513 485 39 FEDEX 534 480 40 KPMG 700 478 41 NIKE 637 470 42 COMCAST CABLE COMMUNICATIONS 462 462 43 QUALCOMM TECHNOLOGIES 29737 458 44 UBER TECHNOLOGIES 2339 444 45 PRICEWATERHOUSECOOPERS ADVISORY 440 440 46 FIDELITY INVESTMENTS 664 439 47 PRICEWATERHOUSECOOPERS 469 438 48 MICRON 437 435 49 COMCAST 578 435 50 CUMMINS 433 431 51 MORGAN STANLEY SERVICES GROUP 429 429 52 CERNER 423 423 53 OATH HOLDINGS 743 422 54 CHARLES SCHWAB 599 398 55 ACCENTURE 401 396 56 AMGEN 406 392 57 KAISER PERMANENTE 865 387 58 ADVANCED MICRO DEVICES 397 386 59 INTUIT 713 385 60 DELOITTE TAX 1260 378 61 UNITED SERVICES AUTOMOBILE ASSOCIATION 491 374 62 T-MOBILE USA 414 368 63 ORACLE AMERICA 8733 363 64 STATE STREET BANK & TRUST 409 356 65 VISA TECHNOLOGY & OPERATIONS 502 356 66 AMERICAN AIRLINES 412 354 67 CVS PHARMACY 390 349 68 DISCOVER 346 337 69 HCL AMERICA 335 335 70 PNC BANK 1456 333 71 OPTUM 352 332 72 CAPGEMINI AMERICA 326 326 73 EQUIFAX 362 313 74 JOHNSON & JOHNSON 376 310 75 TESLA 309 309 76 CREDIT SUISSE SECURITIES (USA) 320 308 77 HUMANA 412 307 78 ADP 409 305 79 MAYO CLINIC 305 305 80 JP MORGAN CHASE 316 302 81 HEWLETT PACKARD ENTERPRISE 1759 301 82 GENERAL MOTORS 305 300 83 HOME DEPOT 309 299 84 BOSTON CONSULTING GROUP 289 289 85 CIGNA 571 289 86 NVIDIA 6954 285 87 GENERAL ELECTRIC 289 280 88 UNITED AIRLINES 540 277 89 CITIBANK N.A 301 273 90 VERIZON SOURCING 436 272 91 BLOOMBERG L.P 823 272 92 VISA U.S.A 326 268 93 ADOBE 820 265 94 MCKINSEY & COMPANY INC UNITED STATES 4024 261 95 CATERPILLAR 286 261 96 TATA CONSULTANCY 264 260 97 WELLS FARGO BANK N.A 396 259 98 NORTHERN TRUST 271 258 99 EXPEDIA 665 257 100 MERCK 288 257 101 GILEAD SCIENCES 2529 255 102 SAP AMERICA 253 253 103 DFS 252 252 104 FCA US 364 243 105 METLIFE 452 243 106 BOFA SECURITIES 240 240 107 JUNIPER NETWORKS 346 240 108 SPRINT 240 240 109 SERVICENOW 4401 239 110 CENTENE 247 238 111 KROGER 354 233 112 SUNTRUST BANKS 291 233 113 ABBVIE 267 232 114 EXPRESS SCRIPTS 239 231 115 NATSOFT 223 223 116 MINDTREE 220 220 117 WAYFAIR 1427 220 118 EMC 216 216 119 HEALTH CARE SERVICE 272 215 120 BARCLAYS 214 214 121 PFIZER 435 214 122 AT & T 338 213 123 VANGUARD 257 209 124 MORGAN STANLEY 217 208 125 FORUM CAPITAL MARKETS LLC (DBA WELLS FAR 207 207 126 GAP 332 203 127 WAYMO 207 203 128 RIVIAN AUTOMOTIVE 221 202 129 T-MOBILE 266 200 130 APPLIED MATERIALS 1023 198 131 STATE FARM MUTUAL AUTOMOBILE INSURANCE 237 198 132 MEDTRONIC 240 197 133 COX AUTOMOTIVE 201 196 134 MACY'S SYSTEMS & 339 196 135 BEST BUY 200 194 136 METROPOLITAN LIFE INSURANCE 220 193 137 DISCOVER PRODUCTS 192 192 138 COMCAST CABLE COMMUNICATIONS MANAGEMENT 236 192 139 VERIZON DATA 190 190 140 U.S BANK NATIONAL ASSOCIATION 190 190 141 CHEVRON 235 189 142 FIDELITY TECHNOLOGY GROUP 188 188 143 SCHLUMBERGER 198 187 144 CARDINAL HEALTH 193 186 145 NATIONWIDE INSURANCE 185 185 146 LOWE'S COMPANIES 184 184 147 NORDSTROM 183 183 148 UNIVERSITY OF MICHIGAN 181 181 149 TRAVELERS 184 180 150 MASTERCARD INTERNATIONAL 279 177 151 CADENCE DESIGN SYSTEMS 485 177 152 VANGUARD GROUP 184 177 153 HP 907 174 154 TECH MAHINDRA (AMERICAS) 172 172 155 TOYOTA 346 172 156 BDO USA 170 170 157 MATHWORKS 170 170 158 BOEING 208 170 159 AKAMAI TECHNOLOGIES 168 168 160 SOUTHWEST AIRLINES 257 168 161 MUFG UNION BANK N.A 191 168 162 AECOM TECHNICAL 167 167 163 WESTERN DIGITAL TECHNOLOGIES 4960 165 164 MCKESSON 168 163 165 HARTFORD 168 163 166 ERICSSON 162 162 167 LIBERTY MUTUAL INSURANCE 613 162 168 MOLINA HEALTHCARE 171 162 169 UBS BUSINESS SOLUTIONS US 168 161 170 TWITTER 190 161 171 PEPSICO 165 160 172 TEXAS INSTRUMENTS 169 160 173 LYFT 167 157 174 SONY INTERACTIVE ENTERTAINMENT 223 156 175 AUTODESK 223 156 176 AIRBNB 158 156 177 FIDELITY MANAGEMENT & RESEARCH 156 156 178 NATIONWIDE MUTUAL INSURANCE 155 155 179 IQVIA 162 153 180 TARGET ENTERPRISE 153 153 181 DXC 2135 153 182 BANK OF NEW YORK MELLON 153 153 183 FARMERS INSURANCE GROUP 176 153 184 SQUARE 152 152 185 SLALOM 235 152 186 FISERV 199 152 187 ALLY FINANCIAL 244 149 188 WELLS FARGO BANK 280 148 189 ZILLOW 147 147 190 TOYOTA MOTOR NORTH AMERICA 227 147 191 NXP USA 146 146 192 3M 159 145 193 VERIZON COMMUNICATIONS 217 145 194 ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI 144 144 195 DELL USA L.P 149 143 196 BECTON DICKINSON 147 143 197 PACIFIC GAS & ELECTRIC 150 141 198 ALLSTATE INSURANCE 223 141 199 MEMORIAL SLOAN KETTERING CANCER CENTER 140 140 200 PALO ALTO NETWORKS 583 139 201 DROPBOX 139 139 202 THERMO FISHER SCIENTIFIC 187 138 203 UNIVERSITY OF CALIFORNIA SAN FRANCISCO 138 138 204 AMERISOURCEBERGEN 143 138 205 HOME DEPOT PRODUCT AUTHORITY 138 138 206 ABBOTT LABORATORIES 147 137 207 INDEED 137 137 208 PROKARMA 136 136 209 PNC 480 136 210 7-ELEVEN 144 134 211 KLA 134 134 212 AETNA RESOURCES 132 132 213 STATE FARM 306 132 214 ONCOR ELECTRIC DELIVERY 146 131 215 NUTANIX 601 130 216 HARVARD UNIVERSITY 130 130 217 WORKDAY 1050 130 218 TRAVELERS INDEMNITY 134 130 219 WALGREENS 135 130 220 ANALOG DEVICES 129 129 221 LELAND STANFORD JR UNIVERSITY 129 129 222 NETFLIX 127 127 223 DEERE 136 127 224 SAP LABS 126 126 225 MOTOROLA SOLUTIONS 136 126 226 COLUMBIA UNIVERSITY 126 126 227 FIS MANAGEMENT 126 126 228 ASML US LP 125 125 229 TRUSTEES OF THE UNIVERSITY OF PENNSYLVAN 124 124 230 JOHNS HOPKINS UNIVERSITY 124 124 231 FREDDIE MAC 128 123 232 EQUINIX 131 122 233 COGNIZANT WORLDWIDE 122 122 234 AETNA 124 122 235 CAPITAL GROUP COMPANIES 212 122 236 MARRIOTT INTERNATIONAL 137 121 237 WALGREEN 121 121 238 AMERIPRISE FINANCIAL 131 121 239 UNIVERSITY OF PITTSBURGH 122 120 240 MASTERCARD 325 120 241 VERIZON WIRELESS 130 120 242 CAREMARK 119 119 243 SAPIENT 119 119 244 SNAP 291 119 245 GLOBALFOUNDRIES U.S 119 119 246 REGENERON PHARMACEUTICALS 124 118 247 SOUTHERN CALIFORNIA EDISON 167 118 248 SPLUNK 170 117 249 TRUIST BANK 164 117 250 SAMSUNG ELECTRONICS AMERICA 116 116 251 APPSTEK 116 116 252 GENENTECH 117 115 253 GOVERNMENT EMPLOYEES INSURANCE COMPANY ( 113 113 254 ST JUDE CHILDREN'S RESEARCH HOSPITAL 113 113 255 CAPITAL ONE NATIONAL ASSOCIATION 113 113 256 CREDIT SUISSE SERVICES (USA) 113 113 257 INTUITIVE SURGICAL OPERATIONS 113 113 258 CISCO 237 113 259 PRUDENTIAL FINANCIAL 158 113 260 ELI LILLY 148 113 261 GENPACT 112 112 262 STATE FARM INSURANCE 113 111 263 UNITED PARCEL SERVICE 111 111 264 NETAPP 112 110 265 COX COMMUNICATIONS 110 110 266 FIDELITY BROKERAGE 110 110 267 DELTA AIR LINES 109 109 268 BLUE SHIELD OF CALIFORNIA 140 108 269 FIAT CHRYSLER AUTOMOBILES 260 108 270 GE DIGITAL HOLDINGS 108 108 271 ERNST & YOUNG 108 107 272 ECLINICALWORKS 105 105 273 CBRE 109 105 274 HORIZON BLUE CROSS BLUE SHIELD OF NEW JE 105 105 275 UT SOUTHWESTERN MEDICAL CENTER 104 104 276 DEUTSCHE BANK SECURITIES 104 104 277 STAPLES 103 103 278 INSURANCE SERVICES OFFICE 103 103 279 NOKIA OF AMERICA 103 103 280 BRISTOL-MYERS SQUIBB 103 103 281 DB USA CORE 102 102 282 CHARTER COMMUNICATIONS OPERATING 115 102 283 TJX COMPANIES 116 101 284 NEW YORK UNIVERSITY 101 101 285 BYTEDANCE 101 101 286 BLUE CROSS BLUE SHIELD OF MICHIGAN 100 100 287 NATIONAL INSTITUTES OF HEALTH HHS 100 100 288 KEYBANK NATIONAL ASSOCIATION 107 99 289 ARM 2325 99 290 CYBERSOURCE 157 99 291 ATLASSIAN 99 99 292 WASHINGTON UNIVERSITY 99 99 293 JP MORGAN CHASE BANK N.A 104 98 294 ASURION 97 97 295 DISH NETWORK 102 97 296 AMERICAN INTERNATIONAL GROUP 97 97 297 DUKE ENERGY 97 97 298 CREDIT SUISSE 107 97 299 SAMSUNG AUSTIN SEMICONDUCTOR L.L.C 96 96 300 EPAM SYSTEMS 1227 96
[1] "Search CASE_STATUS for CERTIFIED" [1] "Search Primary Sites Only" [1] "Group by EMPLOYER_NAME2" [1] "" [1] "H-1B DISCLOSURE DATA, FY 2020" [1] "(CASE_STATUS=CERTIFIED)" [1] "" [1] "SUM(TOTAL_WORKERS) = 315,457" [1] "SUM(APPLICATIONS) = 173,092" [1] "NUMBER OF ROWS = 26,371" [1] "MEDIAN(LOW_WAGE) = NULL" [1] "MEAN(LOW_WAGE) = NA" [1] "" EMPLOYER_NAME2 WORKERS APPLICATIONS 1 GOOGLE 6496 6496 2 COGNIZANT TECHNOLOGY SOLUTIONS US 5520 5520 3 ERNST & YOUNG U.S 5113 5113 4 AMAZON.COM 5449 4769 5 MICROSOFT 4220 4133 6 DELOITTE CONSULTING 8876 4109 7 FACEBOOK 6315 2320 8 APPLE 5671 1864 9 WAL-MART ASSOCIATES 1586 1586 10 JPMORGAN CHASE 1352 1320 11 SALESFORCE.COM 1500 1294 12 INTERNATIONAL BUSINESS MACHINES 986 986 13 DELOITTE & TOUCHE 2720 890 14 AMAZON WEB 872 850 15 GOLDMAN SACHS 818 818 16 LINKEDIN 969 717 17 VMWARE 790 714 18 CISCO SYSTEMS 5793 686 19 INTEL 1816 649 20 INFOSYS 807 582 21 CAPITAL ONE 578 578 22 BANK OF AMERICA N.A 578 578 23 PAYPAL 752 578 24 BLACKROCK FINANCIAL MANAGEMENT 558 558 25 EBAY 592 476 26 IBM 461 461 27 PRICEWATERHOUSECOOPERS ADVISORY 440 440 28 QUALCOMM TECHNOLOGIES 29712 440 29 KPMG 658 436 30 UBER TECHNOLOGIES 2325 430 31 ANTHEM 426 426 32 OATH HOLDINGS 743 422 33 CERNER 413 413 34 MORGAN STANLEY SERVICES GROUP 411 411 35 MICRON 393 393 36 DELOITTE TAX 1260 378 37 ADVANCED MICRO DEVICES 388 377 38 ACCENTURE 369 369 39 ORACLE AMERICA 8731 361 40 PRICEWATERHOUSECOOPERS 355 355 41 VISA TECHNOLOGY & OPERATIONS 500 354 42 COMCAST CABLE COMMUNICATIONS 347 347 43 AMGEN 326 326 44 CAPGEMINI AMERICA 318 318 45 INTUIT 566 303 46 HCL AMERICA 290 290 47 TESLA 288 288 48 BOSTON CONSULTING GROUP 281 281 49 CHARTER COMMUNICATIONS 272 272 50 CREDIT SUISSE SECURITIES (USA) 271 271 51 BLOOMBERG L.P 820 269 52 NVIDIA 6926 267 53 VISA U.S.A 323 265 54 AMERICAN EXPRESS 314 263 55 CUMMINS 261 261 56 MCKINSEY & COMPANY INC UNITED STATES 4024 261 57 MAYO CLINIC 258 258 58 TATA CONSULTANCY 260 256 59 OPTUM 252 252 60 EXPEDIA 654 246 61 SAP AMERICA 245 245 62 ADOBE 798 243 63 GENERAL MOTORS 241 241 64 BOFA SECURITIES 240 240 65 DFS 234 234 66 FORD MOTOR 229 229 67 SERVICENOW 4385 223 68 NATSOFT 223 223 69 CITIBANK N.A 218 218 70 WAYFAIR 1425 218 71 ADP 319 217 72 HEWLETT PACKARD ENTERPRISE 1549 216 73 EMC 213 213 74 MINDTREE 205 205 75 WAYMO 202 202 76 STATE STREET BANK & TRUST 193 193 77 DISCOVER PRODUCTS 191 191 78 FIDELITY TECHNOLOGY GROUP 188 188 79 RIVIAN AUTOMOTIVE 204 187 80 BARCLAYS 184 184 81 U.S BANK NATIONAL ASSOCIATION 182 182 82 UNIVERSITY OF MICHIGAN 181 181 83 JUNIPER NETWORKS 285 179 84 T-MOBILE USA 176 176 85 CADENCE DESIGN SYSTEMS 479 171 86 BDO USA 170 170 87 AKAMAI TECHNOLOGIES 168 168 88 MASTERCARD INTERNATIONAL 269 167 89 AECOM TECHNICAL 167 167 90 MATHWORKS 167 167 91 TECH MAHINDRA (AMERICAS) 166 166 92 AMERICAN AIRLINES 158 158 93 TWITTER 187 158 94 NORDSTROM 156 156 95 TARGET ENTERPRISE 152 152 96 SQUARE 152 152 97 SLALOM 235 152 98 UBS BUSINESS SOLUTIONS US 151 151 99 FIDELITY MANAGEMENT & RESEARCH 151 151 100 FCA US 150 150 101 COX AUTOMOTIVE 149 149 102 AIRBNB 148 148 103 WESTERN DIGITAL TECHNOLOGIES 4938 147 104 VERIZON DATA 147 147 105 MACY'S SYSTEMS & 289 146 106 ZILLOW 146 146 107 ERICSSON 145 145 108 TEXAS INSTRUMENTS 145 145 109 SONY INTERACTIVE ENTERTAINMENT 144 144 110 LOWE'S COMPANIES 144 144 111 ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI 144 144 112 LYFT 143 143 113 FEDEX 143 143 114 NXP USA 141 141 115 SCHLUMBERGER 141 141 116 DELL USA L.P 139 139 117 MEMORIAL SLOAN KETTERING CANCER CENTER 138 138 118 HOME DEPOT PRODUCT AUTHORITY 138 138 119 INDEED 137 137 120 UNIVERSITY OF CALIFORNIA SAN FRANCISCO 136 136 121 AUTODESK 197 135 122 PROKARMA 134 134 123 AETNA RESOURCES 132 132 124 DROPBOX 131 131 125 LELAND STANFORD JR UNIVERSITY 129 129 126 IQVIA 128 128 127 HP 797 127 128 NETFLIX 126 126 129 FIS MANAGEMENT 126 126 130 COLUMBIA UNIVERSITY 125 125 131 TRUSTEES OF THE UNIVERSITY OF PENNSYLVAN 124 124 132 SAP LABS 124 124 133 KLA 124 124 134 JOHNS HOPKINS UNIVERSITY 123 123 135 ASML US LP 123 123 136 NUTANIX 593 122 137 COGNIZANT WORLDWIDE 122 122 138 PALO ALTO NETWORKS 565 121 139 ANALOG DEVICES 120 120 140 WELLS FARGO BANK N.A 119 119 141 NIKE 119 119 142 SNAP 291 119 143 HARVARD UNIVERSITY 119 119 144 UNIVERSITY OF PITTSBURGH 119 119 145 CAREMARK 118 118 146 SAPIENT 117 117 147 GLOBALFOUNDRIES U.S 117 117 148 APPLIED MATERIALS 940 115 149 WORKDAY 1033 115 150 CAPITAL ONE NATIONAL ASSOCIATION 113 113 151 ST JUDE CHILDREN'S RESEARCH HOSPITAL 112 112 152 GOVERNMENT EMPLOYEES INSURANCE COMPANY ( 111 111 153 CHARLES SCHWAB 111 111 154 GENPACT 111 111 155 CREDIT SUISSE SERVICES (USA) 111 111 156 TRUIST BANK 158 111 157 FIDELITY BROKERAGE 110 110 158 AT&T 109 109 159 GE DIGITAL HOLDINGS 108 108 160 GILEAD SCIENCES 2365 106 161 ECLINICALWORKS 105 105 162 EQUIFAX 104 104 163 DEUTSCHE BANK SECURITIES 104 104 164 CVS PHARMACY 103 103 165 INSURANCE SERVICES OFFICE 103 103 166 UT SOUTHWESTERN MEDICAL CENTER 103 103 167 DB USA CORE 102 102 168 NOKIA OF AMERICA 101 101 169 BYTEDANCE 101 101 170 SPLUNK 149 100 171 NATIONAL INSTITUTES OF HEALTH HHS 100 100 172 ARM 2325 99 173 CYBERSOURCE 157 99 174 DEERE 99 99 175 NEW YORK UNIVERSITY 97 97 176 APPSTEK 97 97 177 SAMSUNG AUSTIN SEMICONDUCTOR L.L.C 96 96 178 MEDTRONIC 96 96 179 THERMO FISHER SCIENTIFIC 95 95 180 EPAM SYSTEMS 1226 95 181 CITADEL SECURITIES AMERICAS 95 95 182 DELL PRODUCTS LP 95 95 183 WASHINGTON UNIVERSITY 95 95 184 UNIVERSITY OF FLORIDA 94 94 185 PIONEER CONSULTING 93 93 186 GENERAL HOSPITAL 93 93 187 ROBERT BOSCH 92 92 188 BATTELLE MEMORIAL INSTITUTE 92 92 189 CIGNA HEALTH & LIFE INSURANCE 91 91 190 ROCKWELL COLLINS 91 91 191 LENDINGCLUB 94 90 192 IBM INDIA PRIVATE 90 90 193 INTUITIVE SURGICAL OPERATIONS 90 90 194 HENRY FORD HEALTH SYSTEM 90 90 195 CREDIT KARMA 89 89 196 ILLUMINA 89 89 197 WOLTERS KLUWER UNITED STATES 89 89 198 UNIVERSITY OF IOWA 89 89 199 F5 NETWORKS 89 89 200 LARSEN & TOUBRO INFOTECH 101 88 201 UNIVERSITY OF CALIFORNIA LOS ANGELES 88 88 202 SPRINT 88 88 203 CBRE 92 88 204 UNIVERSITY OF UTAH 88 88 205 MOTOROLA SOLUTIONS 87 87 206 TRUSTEES OF PRINCETON UNIVERSITY 87 87 207 MUFG UNION BANK N.A 87 87 208 NETAPP 88 86 209 DELL PRODUCTS L.P 86 86 210 SAMSUNG SEMICONDUCTOR 1929 86 211 CITADEL ENTERPRISE AMERICAS 85 85 212 UNIVERSITY OF ALABAMA AT BIRMINGHAM 85 85 213 SYNOPSYS 3265 84 214 MICROCHIP 84 84 215 SYNECHRON 84 84 216 CITADEL AMERICAS 84 84 217 MICHIGAN STATE UNIVERSITY 83 83 218 FORTINET 232 83 219 DEVEREUX FOUNDATION 83 83 220 TRANSUNION 83 83 221 CA 363 83 222 CITRIX SYSTEMS 221 83 223 MERRILL LYNCH 82 82 224 BECTON DICKINSON 82 82 225 ATLASSIAN 82 82 226 NORTHWESTERN UNIVERSITY 82 82 227 EPSILON DATA MANAGEMENT 82 82 228 ELECTRONIC ARTS 82 82 229 REGENERON PHARMACEUTICALS 81 81 230 QUALCOMM ATHEROS 5453 81 231 DXC 2063 81 232 UNIVERSITY OF CHICAGO 80 80 233 BRIGHAM & WOMEN'S HOSPITAL 79 79 234 PINTEREST 79 79 235 GOLDMAN SACHS BANK USA 78 78 236 UT-BATTELLE LLC (OAK RIDGE NATIONAL LABO 78 78 237 RANDSTAD TECHNOLOGIES 77 77 238 MARKIT NORTH AMERICA 77 77 239 NCR 249 77 240 CYPRESS SEMICONDUCTOR 1681 76 241 UNIVERSITY OF CALIFORNIA SAN DIEGO 76 76 242 OKTA 76 76 243 BAYLOR COLLEGE OF MEDICINE 76 76 244 CHILDREN'S HOSPITAL 75 75 245 DELOITTE TRANSACTIONS & BUSINESS ANALYTI 225 75 246 UNIVERSITY OF CALIFORNIA DAVIS 75 75 247 UNIVERSITY OF MINNESOTA 75 75 248 YALE UNIVERSITY 74 74 249 EMORY UNIVERSITY 74 74 250 EVERCORE PARTNERS SERVICES EAST 74 74 251 HERBALIFE INTERNATIONAL OF AMERICA 73 73 252 NTT DATA 73 73 253 CARDINAL HEALTH 73 73 254 RBC CAPITAL MARKETS 123 73 255 ASURION 72 72 256 CLOUDERA 72 72 257 GE HEALTHCARE IITS USA 72 72 258 UNIVERSITY OF COLORADO 72 72 259 MCKESSON 71 71 260 MENTOR GRAPHICS 1655 71 261 CGI TECHNOLOGIES & SOLUTIONS 471 70 262 EQUINIX 70 70 263 MASSACHUSETTS INSTITUTE OF 70 70 264 ONETRUST 70 70 265 NATIONWIDE INSURANCE 69 69 266 WIPRO 111 69 267 TEXAS A&M UNIVERSITY 69 69 268 PENNSYLVANIA STATE UNIVERSITY 69 69 269 DISH NETWORK 69 69 270 UNIVERSITY OF SOUTHERN CALIFORNIA 68 68 271 KEYSIGHT TECHNOLOGIES 1174 67 272 FUJITSU AMERICA 123 67 273 CURATORS OF THE UNIVERSITY OF MISSOURI 67 67 274 UNIVERSITY OF CALIFORNIA BERKELEY 67 67 275 BRISTOL-MYERS SQUIBB 67 67 276 EXPRESS SCRIPTS 75 67 277 EXLSERVICE.COM 66 66 278 UNIVERSITY OF WISCONSIN SYSTEM 66 66 279 QUICKEN LOANS 66 66 280 KOHN PEDERSEN FOX ASSOCIATES PC 66 66 281 ARCADIS U.S 66 66 282 ELLIE MAE 65 65 283 UNIVERSITY OF TEXAS AT AUSTIN 65 65 284 UNIVERSITY OF CONNECTICUT 65 65 285 RSM US 65 65 286 SEMICONDUCTOR COMPONENTS INDUSTRIES 160 65 287 UATC 972 64 288 CORNELL UNIVERSITY 64 64 289 DANA-FARBER CANCER INSTITUTE 63 63 290 BRIDGEWATER ASSOCIATES LP 63 63 291 BANK OF NEW YORK MELLON 63 63 292 ASTRAZENECA PHARMACEUTICALS LP 63 63 293 HULU 62 62 294 SCHNEIDER ELECTRIC USA 62 62 295 NIAGARA BOTTLING 62 62 296 JUNIPER NETWORKS (US) 74 62 297 WEILL CORNELL MEDICAL COLLEGE 62 62 298 UNIVERSITY OF WASHINGTON 62 62 299 MEDLINE INDUSTRIES 62 62 300 CLIENT NETWORK 62 62
[1] "Search CASE_STATUS for CERTIFIED" [1] "Search Secondary Sites Only" [1] "Group by EMPLOYER_NAME2" [1] "" [1] "H-1B DISCLOSURE DATA, FY 2020" [1] "(CASE_STATUS=CERTIFIED)" [1] "" [1] "SUM(TOTAL_WORKERS) = 110,746" [1] "SUM(APPLICATIONS) = 84,191" [1] "NUMBER OF ROWS = 14,587" [1] "MEDIAN(LOW_WAGE) = NULL" [1] "MEAN(LOW_WAGE) = NA" [1] "" EMPLOYER_NAME2 WORKERS APPLICATIONS 1 WELLS FARGO 1583 1467 2 ANTHEM 1157 1070 3 APPLE 1217 1044 4 AMERICAN EXPRESS 962 861 5 VERIZON 926 801 6 AT&T 877 770 7 FORD MOTOR 1105 694 8 BANK OF AMERICA 670 651 9 CITIGROUP 667 643 10 GOOGLE 662 557 11 CAPITAL ONE 598 541 12 FANNIE MAE 671 507 13 WALMART 617 486 14 CVS HEALTH 513 485 15 FIDELITY INVESTMENTS 664 439 16 COMCAST 577 434 17 CISCO SYSTEMS 481 430 18 KAISER PERMANENTE 865 387 19 UNITED SERVICES AUTOMOBILE ASSOCIATION 491 374 20 NIKE 518 351 21 CHARTER COMMUNICATIONS 436 340 22 FEDEX 391 337 23 DISCOVER 346 337 24 PNC BANK 1456 333 25 JP MORGAN CHASE 313 299 26 HOME DEPOT 309 299 27 JOHNSON & JOHNSON 360 294 28 CIGNA 571 289 29 CHARLES SCHWAB 488 287 30 MICROSOFT 344 281 31 HUMANA 349 276 32 VERIZON SOURCING 436 272 33 UNITED AIRLINES 534 271 34 MERCK 288 257 35 CVS PHARMACY 287 246 36 METLIFE 452 243 37 CENTENE 247 238 38 NORTHERN TRUST 241 228 39 SUNTRUST BANKS 283 225 40 KROGER 341 220 41 GENERAL ELECTRIC 229 220 42 AT & T 338 213 43 EQUIFAX 258 209 44 VANGUARD 257 209 45 FORUM CAPITAL MARKETS LLC (DBA WELLS FAR 207 207 46 CATERPILLAR 232 207 47 T-MOBILE 266 200 48 FACEBOOK 279 199 49 AMERICAN AIRLINES 254 196 50 PFIZER 416 195 51 STATE FARM MUTUAL AUTOMOBILE INSURANCE 233 194 52 METROPOLITAN LIFE INSURANCE 220 193 53 T-MOBILE USA 238 192 54 COMCAST CABLE COMMUNICATIONS MANAGEMENT 236 192 55 HEALTH CARE SERVICE 245 188 56 TRAVELERS 184 180 57 TOYOTA 346 172 58 ABBVIE 206 171 59 CUMMINS 172 170 60 DELOITTE CONSULTING 195 164 61 EXPRESS SCRIPTS 164 164 62 GAP 292 164 63 STATE STREET BANK & TRUST 216 163 64 HARTFORD 168 163 65 BOEING 192 159 66 LIBERTY MUTUAL INSURANCE 609 158 67 CHEVRON 203 157 68 NATIONWIDE MUTUAL INSURANCE 155 155 69 BEST BUY 159 153 70 PAYPAL 275 153 71 FARMERS INSURANCE GROUP 176 153 72 SPRINT 152 152 73 FISERV 199 152 74 SOUTHWEST AIRLINES 239 150 75 GILEAD SCIENCES 164 149 76 ALLY FINANCIAL 244 149 77 WELLS FARGO BANK 280 148 78 MORGAN STANLEY 156 147 79 TOYOTA MOTOR NORTH AMERICA 227 147 80 VERIZON COMMUNICATIONS 217 145 81 PEPSICO 148 143 82 JPMORGAN CHASE 261 142 83 WELLS FARGO BANK N.A 277 140 84 3M 152 138 85 VANGUARD GROUP 144 137 86 ALLSTATE INSURANCE 218 136 87 MOLINA HEALTHCARE 143 134 88 STATE FARM 306 132 89 ONCOR ELECTRIC DELIVERY 146 131 90 PACIFIC GAS & ELECTRIC 140 131 91 WALGREENS 134 129 92 INTEL 220 129 93 TRAVELERS INDEMNITY 130 126 94 FREDDIE MAC 128 123 95 AETNA 124 122 96 CAPITAL GROUP COMPANIES 212 122 97 MASTERCARD 325 120 98 VERIZON WIRELESS 130 120 99 AMERISOURCEBERGEN 125 120 100 WALGREEN 117 117 101 SOUTHERN CALIFORNIA EDISON 166 117 102 NATIONWIDE INSURANCE 116 116 103 COMCAST CABLE COMMUNICATIONS 115 115 104 CISCO 237 113 105 PRUDENTIAL FINANCIAL 158 113 106 CARDINAL HEALTH 120 113 107 STATE FARM INSURANCE 113 111 108 ABBOTT LABORATORIES 120 110 109 FIAT CHRYSLER AUTOMOBILES 260 108 110 ERNST & YOUNG 108 107 111 UNITED PARCEL SERVICE 106 106 112 HORIZON BLUE CROSS BLUE SHIELD OF NEW JE 105 105 113 CHARTER COMMUNICATIONS OPERATING 115 102 114 MEDTRONIC 144 101 115 EBAY 130 101 116 JP MORGAN CHASE BANK N.A 104 98 117 AMERICAN INTERNATIONAL GROUP 97 97 118 DUKE ENERGY 97 97 119 CREDIT SUISSE 107 97 120 WORLD BANK GROUP 96 96 121 MARRIOTT INTERNATIONAL 112 96 122 BLUE SHIELD OF CALIFORNIA 127 95 123 FCA US 214 93 124 7-ELEVEN 102 92 125 MCKESSON 97 92 126 EDWARD JONES 102 92 127 GOLDMAN SACHS 96 91 128 NATIONAL INSTITUTES OF HEALTH 105 91 129 COX COMMUNICATIONS 91 91 130 TJX COMPANIES 106 91 131 NISSAN NORTH AMERICA 100 91 132 BANK OF NEW YORK MELLON 90 90 133 ADP 90 88 134 JP MORGAN CHASE BANK NATIONAL ASSOCIATIO 88 88 135 DELOITTE 87 87 136 CENTURYLINK 86 86 137 PNC BANK NATIONAL ASSOCIATION 85 85 138 HEWLETT PACKARD ENTERPRISE 210 85 139 SYNCHRONY FINANCIAL 85 85 140 UNITED HEALTH GROUP 89 84 141 STATE OF CALIFORNIA 84 84 142 WAL-MART STORES 84 84 143 CITIZENS BANK 113 84 144 PRICEWATERHOUSECOOPERS 114 83 145 ELI LILLY 118 83 146 DELTA AIR LINES 83 83 147 APPLIED MATERIALS 83 83 148 INTUIT 147 82 149 CONDUENT 105 82 150 STATE STREET 82 82 151 CITICORP NORTH AMERICA 100 82 152 MUFG UNION BANK N.A 104 81 153 AMERIPRISE FINANCIAL 83 81 154 OPTUM 100 80 155 KEYBANK NATIONAL ASSOCIATION 84 80 156 BNSF RAILWAY 89 79 157 FLORIDA BLUE 79 79 158 TRUIST FINANCIAL 78 78 159 PNC 420 76 160 EMBLEM HEALTH 76 76 161 CITIBANK 77 75 162 MIRACLE SOFTWARE SYSTEMS 152 74 163 GE HEALTHCARE 73 73 164 BLUE CROSS BLUE SHIELD OF MICHIGAN 73 73 165 LINCOLN FINANCIAL GROUP 91 73 166 FLORIDA POWER & LIGHT 72 72 167 T-MOBILE US 72 72 168 DXC 72 72 169 KOHL'S DEPARTMENT STORES 83 72 170 M&T BANK 99 72 171 ROCKWELL AUTOMATION 71 71 172 FIDELITY 85 70 173 GENENTECH 72 70 174 US BANK 69 69 175 CHANGE HEALTHCARE 69 69 176 THOMSON REUTERS 69 69 177 UNITED SERVICES AUTOMOBILE ASSOCIATION ( 99 69 178 SEI INVESTMENTS 92 67 179 FINRA 66 66 180 CALIBER HOME LOANS 81 66 181 AMGEN 80 66 182 ADVANTASURE 66 66 183 CHUBB 65 65 184 NORTHWESTERN MUTUAL LIFE 101 65 185 STRYKER 90 64 186 DELTA AIRLINES 64 64 187 PRINCIPAL FINANCIAL GROUP 69 64 188 NBC UNIVERSAL 82 63 189 SAMSUNG ELECTRONICS AMERICA 63 63 190 T ROWE PRICE 65 63 191 MUFG UNION BANK 62 62 192 HOME DEPOT U.S.A 148 61 193 BECTON DICKINSON 65 61 194 WALMART STORES 63 61 195 JUNIPER NETWORKS 61 61 196 BRANCH BANKING & TRUST 60 60 197 COCA-COLA 60 60 198 QUEST DIAGNOSTICS 80 60 199 CELGENE 59 59 200 GENERAL MOTORS 64 59 201 CITI GROUP 59 59 202 LPL FINANCIAL 58 58 203 AMAZON 67 58 204 JPMORGAN CHASE BANK N.A 57 57 205 PROCTER & GAMBLE 99 57 206 TEACHERS INSURANCE & ANNUITY ASSOCIATION 57 57 207 STANDARD INSURANCE 57 57 208 JOHN DEERE 56 56 209 NEW YORK LIFE INSURANCE 126 56 210 DEUTSCHE BANK 102 56 211 BANK OF THE WEST 89 55 212 GEICO 55 55 213 COLLINS AEROSPACE 55 55 214 CITIBANK N.A 83 55 215 MASSACHUSETTS MUTUAL LIFE INSURANCE 102 54 216 FIFTH THIRD BANK 54 54 217 STATE COMPENSATION INSURANCE FUND 62 53 218 HONDA R&D AMERICAS 53 53 219 SAFEWAY 71 53 220 DAVITA 53 53 221 TRANSAMERICA 109 53 222 HALLIBURTON 53 53 223 CARGILL 78 53 224 IBM 53 53 225 PREMIER 53 53 226 VISA 54 52 227 LINCOLN NATIONAL 136 52 228 EQUINIX 61 52 229 UBS AG 88 52 230 BANK OF AMERICA N.A 97 52 231 MACY'S 70 52 232 TOYOTA MOTORS NORTH AMERICA 78 52 233 FRONTIER COMMUNICATIONS 51 51 234 BLUE CROSS BLUE SHIELD 60 51 235 AXA EQUITABLE LIFE INSURANCE 51 51 236 NAVISTAR 51 51 237 BIOGEN 51 51 238 METLIFE INSURANCE COMPANY OF CONNECTICUT 51 51 239 LIBERTY MUTUAL 123 50 240 EXXONMOBIL 56 50 241 PRIME THERAPEUTICS 50 50 242 AMERICAN ELECTRIC POWER 109 50 243 COSTCO WHOLESALE 59 50 244 MACY'S SYSTEMS & 50 50 245 PHILLIPS 66 49 49 246 INFOSYS 54 49 247 VOLKSWAGEN GROUP OF AMERICA 49 49 248 TEACHERS INSURANCE & ANNUITY ASSOCIATION 49 49 249 TD AMERITRADE 48 48 250 STAPLES 48 48 251 GOLDMAN SACHS GROUP 66 48 252 USAA ACCEPTANCE 48 48 253 STARBUCKS 47 47 254 HP 110 47 255 MAYO CLINIC 47 47 256 AETNA LIFE INSURANCE 47 47 257 COX AUTOMOTIVE 52 47 258 DUN & BRADSTREET 47 47 259 BP CORPORATION NORTH AMERICA 83 47 260 SCHLUMBERGER 57 46 261 EXPRESS SCRIPTS HOLDING 46 46 262 EMBLEMHEALTH 46 46 263 CAREFIRST BLUECROSS BLUESHIELD 49 45 264 WILLIAMS SONOMA 54 45 265 HCA - INFORMATION TECHNOLOGY & 55 45 266 FIRST DATA 45 45 267 HCL AMERICA 45 45 268 FARMERS INSURANCE 202 45 269 WALT DISNEY 54 45 270 SYSCO 53 44 271 ADVANCE AUTO PARTS 49 44 272 UBS 77 44 273 DAIMLER TRUCKS NORTH AMERICA 44 44 274 EXELON 80 44 275 PEARSON EDUCATION 44 44 276 MOODY'S 90 44 277 THERMO FISHER SCIENTIFIC 92 43 278 COTIVITI 43 43 279 HONDA NORTH AMERICA 58 43 280 SPRINT/UNITED MANAGEMENT 43 43 281 PEARSON 45 43 282 BNY MELLON 86 43 283 VERIZON DATA 43 43 284 FIRST REPUBLIC BANK 57 43 285 HERTZ 53 43 286 TRACTOR SUPPLY 43 43 287 VERIZON CORPORATE SERVICES GROUP 43 43 288 PITNEY BOWES 43 43 289 BOSTON SCIENTIFIC 47 42 290 KPMG 42 42 291 MICRON 44 42 292 NORTHWESTERN MUTUAL LIFE INSURANCE 42 42 293 KPS 51 42 294 TIFFANY 47 42 295 STATE OF MICHIGAN 49 41 296 SILICON VALLEY BANK 43 41 297 KEURIG DR PEPPER 41 41 298 INTERNATIONAL BUSINESS MACHINES 41 41 299 MARSH & MCLENNAN COMPANIES 41 41 300 WALMART LABS 41 41
Note: Secondary Employers denote when workers will be placed at a secondary location. In this case, field SECONDARY ENTITY is set to Y as explained in this File Structure file and EMPLOYER_NAME2 above will be set to the contents of field SECONDARY ENTITY BUSINESS NAME. Primary Employers denote when workers will NOT be placed at a secondary location. For more information, see section titled "Finding the Names of Companies where H-1B Holders are Working, even if they're Employed by a Another Company, FY 2020" at http://econdataus.com/h1b_states.htm. Source: OFLC Performance Data (click Disclosure Data tab and go to section "Latest Quarterly Updates"), 2020, Q2
R is a language and environment for statistical computing and graphics. One benefit of R is that it's often possible to analyze data with relatively little code. The following code shows the first step in replicating the first 20 lines in the table in the prior section:
library("tidyverse") library("readxl") # Download the latest H-1B disclosure file to the local directory from the following URL: # https://www.foreignlaborcert.doleta.gov/pdf/PerformanceData/2020/H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx if (!exists("dd")){ dd <- read_xlsx("H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx", guess_max = 272089) } oo <- dd %>% filter(CASE_STATUS == "Certified") %>% filter(SECONDARY_ENTITY == "Y") %>% group_by(SECONDARY_ENTITY_BUSINESS_NAME) %>% summarize(WORKERS = sum(TOTAL_WORKER_POSITIONS), APPLICATIONS = n()) %>% arrange(desc(APPLICATIONS), desc(WORKERS)) print(head(as.data.frame(oo), 20))On the left below is the resulting output. To the right of it are the first 20 lines from the prior section:
DATA GENERATED BY CODE ABOVE FIRST 20 LINES FROM PRIOR SECTION ------------------------------------------------------------------------------ ----------------------------------------------------------------- SECONDARY_ENTITY_BUSINESS_NAME WORKERS APPLICATIONS EMPLOYER_NAME2 WORKERS APPLICATIONS 1 Wells Fargo 969 926 1 WELLS FARGO 1583 1467 2 Ford Motor Company 967 606 2 ANTHEM 1157 1070 3 Verizon 673 554 3 APPLE 1217 1044 4 Bank of America 505 491 4 AMERICAN EXPRESS 962 861 5 WELLS FARGO 471 448 5 VERIZON 926 801 6 Fannie Mae 592 428 6 AT&T 877 770 7 Apple Inc. 456 421 7 FORD MOTOR 1105 694 8 CVS Health 407 379 8 BANK OF AMERICA 670 651 9 Capital One 386 359 9 CITIGROUP 667 643 10 Kaiser Permanente 828 350 10 GOOGLE 662 557 11 Fidelity Investments 530 314 11 CAPITAL ONE 598 541 12 PNC Bank 1412 306 12 FANNIE MAE 671 507 13 Anthem, Inc. 321 295 13 WALMART 617 486 14 American Express 307 286 14 CVS HEALTH 513 485 15 Apple, Inc. 337 265 15 FIDELITY INVESTMENTS 664 439 16 Comcast 373 255 16 COMCAST 577 434 17 Walmart 328 237 17 CISCO SYSTEMS 481 430 18 AT&T Services Inc 229 229 18 KAISER PERMANENTE 865 387 19 American Express Travel Related Services Company, Inc. 238 227 19 UNITED SERVICES AUTOMOBILE ASSOCIATION 491 374 20 VERIZON 228 222 20 NIKE 518 351As can be seen, Wells Fargo is listed on line 1 as above but the counts are much lower. In addition, the companies listed on lines 2 and 3 of the prior section (ANTHEM and APPLE) don't show up until lines 13 and 7, respectively. Part of the problem can be seen to be that lines 1 and 5 are Wells Fargo and WELLS FARGO, respectively. The following code adds a line (in red) to convert all of the employer names to uppercase.
library("tidyverse") library("readxl") # Download the latest H-1B disclosure file to the local directory from the following URL: # https://www.foreignlaborcert.doleta.gov/pdf/PerformanceData/2020/H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx if (!exists("dd")){ dd <- read_xlsx("H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx", guess_max = 272089) } oo <- dd %>% filter(CASE_STATUS == "Certified") %>% filter(SECONDARY_ENTITY == "Y") %>% mutate(SECONDARY_ENTITY_BUSINESS_NAME = str_to_upper(SECONDARY_ENTITY_BUSINESS_NAME)) %>% group_by(SECONDARY_ENTITY_BUSINESS_NAME) %>% summarize(WORKERS = sum(TOTAL_WORKER_POSITIONS), APPLICATIONS = n()) %>% arrange(desc(APPLICATIONS), desc(WORKERS)) print(head(as.data.frame(oo), 20))On the left below is the resulting output. To the right of it are the first 20 lines from the prior section:
DATA GENERATED BY CODE ABOVE FIRST 20 LINES FROM PRIOR SECTION ------------------------------------------------------ ----------------------------------------------------------------- SECONDARY_ENTITY_BUSINESS_NAME WORKERS APPLICATIONS EMPLOYER_NAME2 WORKERS APPLICATIONS 1 WELLS FARGO 1451 1380 1 WELLS FARGO 1583 1467 2 VERIZON 907 782 2 ANTHEM 1157 1070 3 FORD MOTOR COMPANY 1061 673 3 APPLE 1217 1044 4 BANK OF AMERICA 658 643 4 AMERICAN EXPRESS 962 861 5 FANNIE MAE 668 504 5 VERIZON 926 801 6 APPLE INC. 509 474 6 AT&T 877 770 7 CAPITAL ONE 485 458 7 FORD MOTOR 1105 694 8 CVS HEALTH 485 457 8 BANK OF AMERICA 670 651 9 FIDELITY INVESTMENTS 631 415 9 CITIGROUP 667 643 10 AMERICAN EXPRESS 428 405 10 GOOGLE 662 557 11 KAISER PERMANENTE 864 386 11 CAPITAL ONE 598 541 12 WALMART 463 368 12 FANNIE MAE 671 507 13 COMCAST 486 363 13 WALMART 617 486 14 CITIGROUP 367 357 14 CVS HEALTH 513 485 15 ANTHEM, INC. 359 333 15 FIDELITY INVESTMENTS 664 439 16 PNC BANK 1452 329 16 COMCAST 577 434 17 ANTHEM 318 291 17 CISCO SYSTEMS 481 430 18 APPLE, INC. 353 281 18 KAISER PERMANENTE 865 387 19 CHARTER COMMUNICATIONS 264 260 19 UNITED SERVICES AUTOMOBILE ASSOCIATION 491 374 20 JP MORGAN CHASE 262 248 20 NIKE 518 351As can be seen, WELLS FARGO is listed on line 1 as in the prior section but the counts are now closer. However, the companies listed on lines 2 and 3 of the prior section (ANTHEM and APPLE) don't show up until lines 15 and 6, respectively. The following code adds a line (in red) to look at all of the employer names (converted to uppercase) that contain ANTHEM.
library("tidyverse") library("readxl") # Download the latest H-1B disclosure file to the local directory from the following URL: # https://www.foreignlaborcert.doleta.gov/pdf/PerformanceData/2020/H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx if (!exists("dd")){ dd <- read_xlsx("H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx", guess_max = 272089) } oo <- dd %>% filter(CASE_STATUS == "Certified") %>% filter(SECONDARY_ENTITY == "Y") %>% mutate(SECONDARY_ENTITY_BUSINESS_NAME = str_to_upper(SECONDARY_ENTITY_BUSINESS_NAME)) %>% filter(str_detect(SECONDARY_ENTITY_BUSINESS_NAME, 'ANTHEM')) %>% group_by(SECONDARY_ENTITY_BUSINESS_NAME) %>% summarize(WORKERS = sum(TOTAL_WORKER_POSITIONS), APPLICATIONS = n()) %>% arrange(desc(APPLICATIONS), desc(WORKERS)) print(head(as.data.frame(oo), 20))Following is the resultant output:
SECONDARY_ENTITY_BUSINESS_NAME WORKERS APPLICATIONS 1 ANTHEM, INC. 387 359 2 ANTHEM 331 304 3 ANTHEM INC 255 247 4 ANTHEM INC. 161 135 5 ANTHEM, INC 51 51 6 ANTHEM BLUE CROSS BLUE SHIELD 16 12 7 ANTHEM CAREMORE 11 11 8 ANTHEM INC., 8 8 9 ANTHEM CAREMORE INTEGRATIO 6 6 10 ANTHEM/CTS 6 6 11 CVS ANTHEM 6 6 12 SIGMA PETROLEUM INC DBA ANTHEM OIL RIALTO 6 6 13 ANTHEM INC. 5 5 14 ANTHEM DIGITAL 5 5 15 ANTHEM BCBS 4 4 16 ANTHEM BLUE CROSS AND BLUE SHIELD 4 4 17 ANTHEM INC,. 3 3 18 ANTHEM,INC 3 3 19 ANTHEM/AMERIGROUP 3 3 20 ANTHEM INC AMERIGROUP 2 2As can be seen, there are multiple slight variations in the employer name given for ANTHEM. For example, there's versions with the following variations of INC appended to ANTHEM: [INC|INC.|, INC|, INC.|INC,.]. Changing the word ANTHEM to APPLE in the added line in red above results in the following output:
SECONDARY_ENTITY_BUSINESS_NAME WORKERS APPLICATIONS 1 APPLE INC. 509 474 2 APPLE, INC. 353 281 3 APPLE INC 214 162 4 APPLE 112 98 5 APPLE, INC 21 21 6 APPLE CORPORATION 3 3 7 DR PEPPER SNAPPLE GROUP 3 3 8 APPLE INC 2 2 9 APPLE ARQUES 1 1 10 APPLE CAMPUS 3 1 1 11 APPLE CENTRAL AND WOLFE CAMPUS 1 1 12 APPLE COMPUTER INC 1 1 13 APPLE COMPUTERS INC 1 1 14 APPLE CORP. 1 1 15 APPLE INC 1 1 16 APPLE,INC 1 1 17 APPLE,INC. 1 1 18 APPLEXUS TECHNOLOGIES LLC 1 1 19 DR PEPPER SNAPPLE GROUP INC 1 1 20 HOGARTH/APPLE 1 1Again, there are several slight variations of APPLE followed by INC. There's no way to tell whether or not these variations were added on purpose, perhaps to make the number of H-1B that they requested look smaller. In any event, this would suggest that it would be very helpful if companies were required to use just one variation of their name. The following lines (in red) can be added to the code to combine most variations of an appended INC.
library("tidyverse") library("readxl") # Download the latest H-1B disclosure file to the local directory from the following URL: # https://www.foreignlaborcert.doleta.gov/pdf/PerformanceData/2020/H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx if (!exists("dd")){ dd <- read_xlsx("H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx", guess_max = 272089) } oo <- dd %>% filter(CASE_STATUS == "Certified") %>% filter(SECONDARY_ENTITY == "Y") %>% mutate(SECONDARY_ENTITY_BUSINESS_NAME = str_to_upper(SECONDARY_ENTITY_BUSINESS_NAME)) %>% #filter(str_detect(SECONDARY_ENTITY_BUSINESS_NAME, 'APPLE')) %>% mutate(SECONDARY_ENTITY_BUSINESS_NAME = str_replace(SECONDARY_ENTITY_BUSINESS_NAME,"\\.","")) %>% mutate(SECONDARY_ENTITY_BUSINESS_NAME = str_replace(SECONDARY_ENTITY_BUSINESS_NAME,",","")) %>% mutate(SECONDARY_ENTITY_BUSINESS_NAME = str_replace(SECONDARY_ENTITY_BUSINESS_NAME," INC$","")) %>% group_by(SECONDARY_ENTITY_BUSINESS_NAME) %>% summarize(WORKERS = sum(TOTAL_WORKER_POSITIONS), APPLICATIONS = n()) %>% arrange(desc(APPLICATIONS), desc(WORKERS)) print(head(as.data.frame(oo), 20))Following is the resultant output:
DATA GENERATED BY CODE ABOVE FIRST 20 LINES FROM PRIOR SECTION ------------------------------------------------------ ----------------------------------------------------------------- SECONDARY_ENTITY_BUSINESS_NAME WORKERS APPLICATIONS EMPLOYER_NAME2 WORKERS APPLICATIONS 1 WELLS FARGO 1454 1383 1 WELLS FARGO 1583 1467 2 ANTHEM 1148 1061 2 ANTHEM 1157 1070 3 APPLE 1209 1036 3 APPLE 1217 1044 4 VERIZON 925 800 4 AMERICAN EXPRESS 962 861 5 FORD MOTOR COMPANY 1061 673 5 VERIZON 926 801 6 BANK OF AMERICA 658 643 6 AT&T 877 770 7 FANNIE MAE 668 504 7 FORD MOTOR 1105 694 8 WALMART 615 484 8 BANK OF AMERICA 670 651 9 CVS HEALTH 504 476 9 CITIGROUP 667 643 10 CAPITAL ONE 485 458 10 GOOGLE 662 557 11 AT&T SERVICES 466 441 11 CAPITAL ONE 598 541 12 FIDELITY INVESTMENTS 659 434 12 FANNIE MAE 671 507 13 CISCO SYSTEMS 481 430 13 WALMART 617 486 14 AMERICAN EXPRESS 430 407 14 CVS HEALTH 513 485 15 CITIGROUP 399 389 15 FIDELITY INVESTMENTS 664 439 16 KAISER PERMANENTE 865 387 16 COMCAST 577 434 17 COMCAST 494 371 17 CISCO SYSTEMS 481 430 18 NIKE 514 347 18 KAISER PERMANENTE 865 387 19 CHARTER COMMUNICATIONS 432 336 19 UNITED SERVICES AUTOMOBILE ASSOCIATION 491 374 20 PNC BANK 1452 329 20 NIKE 518 351As can be seen, Wells Fargo, Anthem, and Apple are now the top 3 as in the prior section and the totals are much closer. However, many of the employer names differ after that. The following code duplicates all of the processing that is done be the application:
library("tidyverse") library("readxl") # Download the latest H-1B disclosure file to the local directory from the following URL: # https://www.foreignlaborcert.doleta.gov/pdf/PerformanceData/2020/H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx if (!exists("dd")){ dd <- read_xlsx("H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx", guess_max = 272089) } xx <- dd %>% filter(CASE_STATUS == "Certified") %>% filter(SECONDARY_ENTITY == "Y") names(xx)[names(xx) == "SECONDARY_ENTITY_BUSINESS_NAME"] <- "EMPLOYER_NAME2" ignore <- c("case","comma","period","the","and","blanks") trailer <- c("INC","INCORPORATED","LLC","LLP","LTD","LIMITED","N A","NA", "& CO","& COMPANY", "CORPORATE SERVICES","FINANCIAL SERVICES", "CO","COMPANY","CORP","CORPORATION", "FINANCIAL SERVICES GROUP","TRAVEL RELATED SERVICES", "SERVICES","TECHNOLOGY") for (i in ignore){ if (i == "case") xx$EMPLOYER_NAME2 <- toupper(xx$EMPLOYER_NAME2) if (i == "comma") xx$EMPLOYER_NAME2 <- gsub("[,]$", "", xx$EMPLOYER_NAME2) if (i == "comma") xx$EMPLOYER_NAME2 <- gsub("[,]", " ", xx$EMPLOYER_NAME2) if (i == "period") xx$EMPLOYER_NAME2 <- gsub("[.]$", "", xx$EMPLOYER_NAME2) if (i == "period") xx$EMPLOYER_NAME2 <- gsub("[.][ ]", " ", xx$EMPLOYER_NAME2) if (i == "the") xx$EMPLOYER_NAME2 <- gsub("^THE ", "", xx$EMPLOYER_NAME2) if (i == "and") xx$EMPLOYER_NAME2 <- gsub(" AND ", " & ", xx$EMPLOYER_NAME2) if (i == "blanks") xx$EMPLOYER_NAME2 <- trimws(gsub("[ ]+", " ", xx$EMPLOYER_NAME2)) } for (i in trailer){ xx$EMPLOYER_NAME2 <- gsub(paste0(" ",i,"$"), "", xx$EMPLOYER_NAME2) } oo <- xx %>% group_by(EMPLOYER_NAME2) %>% summarize(WORKERS = sum(TOTAL_WORKER_POSITIONS), APPLICATIONS = n()) %>% arrange(desc(APPLICATIONS), desc(WORKERS)) print(head(as.data.frame(oo), 20))Following is the resultant output:
DATA GENERATED BY CODE ABOVE FIRST 20 LINES FROM PRIOR SECTION -------------------------------------------------------------- ----------------------------------------------------------------- EMPLOYER_NAME2 WORKERS APPLICATIONS EMPLOYER_NAME2 WORKERS APPLICATIONS 1 WELLS FARGO 1583 1467 1 WELLS FARGO 1583 1467 2 ANTHEM 1157 1070 2 ANTHEM 1157 1070 3 APPLE 1217 1044 3 APPLE 1217 1044 4 AMERICAN EXPRESS 962 861 4 AMERICAN EXPRESS 962 861 5 VERIZON 926 801 5 VERIZON 926 801 6 AT&T 877 770 6 AT&T 877 770 7 FORD MOTOR 1105 694 7 FORD MOTOR 1105 694 8 BANK OF AMERICA 670 651 8 BANK OF AMERICA 670 651 9 CITIGROUP 667 643 9 CITIGROUP 667 643 10 GOOGLE 662 557 10 GOOGLE 662 557 11 CAPITAL ONE 598 541 11 CAPITAL ONE 598 541 12 FANNIE MAE 671 507 12 FANNIE MAE 671 507 13 WALMART 617 486 13 WALMART 617 486 14 CVS HEALTH 513 485 14 CVS HEALTH 513 485 15 FIDELITY INVESTMENTS 664 439 15 FIDELITY INVESTMENTS 664 439 16 COMCAST 577 434 16 COMCAST 577 434 17 CISCO SYSTEMS 481 430 17 CISCO SYSTEMS 481 430 18 KAISER PERMANENTE 865 387 18 KAISER PERMANENTE 865 387 19 UNITED SERVICES AUTOMOBILE ASSOCIATION 491 374 19 UNITED SERVICES AUTOMOBILE ASSOCIATION 491 374 20 NIKE 518 351 20 NIKE 518 351As can be seen, the top 20 employer names are now identical to what they were in the prior section. It should be noted that the above rules will not be able to combine all variations of an employer name. For example, most misspellings are likely impossible to catch via general rules. Still, if one is focusing on a specific company, it's often possible to search for many misspellings by searching for a unique substring of the employer name and then searching for those matches which do not match the full employer name. For example, the following code will find employer names that contain "FARGO" but don't contain "WELLS FARGO".
library("tidyverse") library("readxl") # Download the latest H-1B disclosure file to the local directory from the following URL: # https://www.foreignlaborcert.doleta.gov/pdf/PerformanceData/2020/H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx if (!exists("dd")){ dd <- read_xlsx("H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx", guess_max = 272089) } oo <- dd %>% filter(SECONDARY_ENTITY == "Y") %>% mutate(SECONDARY_ENTITY_BUSINESS_NAME = str_to_upper(SECONDARY_ENTITY_BUSINESS_NAME)) %>% filter(str_detect(SECONDARY_ENTITY_BUSINESS_NAME, 'FARGO')) %>% filter(!str_detect(SECONDARY_ENTITY_BUSINESS_NAME, 'WELLS FARGO')) %>% group_by(SECONDARY_ENTITY_BUSINESS_NAME) %>% summarize(WORKERS = sum(TOTAL_WORKER_POSITIONS), APPLICATIONS = n()) %>% arrange(desc(APPLICATIONS)) print(head(as.data.frame(oo), 200))Following is the resultant output:
SECONDARY_ENTITY_BUSINESS_NAME WORKERS APPLICATIONS 1 WELLSFARGO 32 32 2 FORUM CAPITAL MARKETS LLC (DBA WELL FARGO) 2 2 3 COGNIZANT / WELLSFARGO 1 1 4 ETTAIN AT WELL FARGO 1 1 5 WELL FARGO 1 1 6 WELL FARGO BANK 1 1 7 WELL FARGO COMMUNITY BANKING 1 1 8 WELLFARGO 1 1 9 WELLS-FARGO BANK, N.A. 1 1 10 WELLS FARGO 1 1 11 WELLSFARGO ADVISORS 1 1 12 WELLSFARGO BANK 1 1 13 WELLSFARGO BANK N.A 1 1 14 WELLSFARGO BANK NA 1 1 15 WELLSFARGO COMMUNITY BANKING 1 1 16 WELLSFARGO FINANCIAL SERVICES 1 1As can be seen, the misspellings of WELLS FARGO appear to include WELLSFARGO, WELLFARGO, WELL FARGO, and WELLS-FARGO. Of course, there's always a possibility that FARGO is misspelled. The following code which changes "FARGO" to "WELLS " searches for that:
library("tidyverse") library("readxl") # Download the latest H-1B disclosure file to the local directory from the following URL: # https://www.foreignlaborcert.doleta.gov/pdf/PerformanceData/2020/H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx if (!exists("dd")){ dd <- read_xlsx("H-1B_H-1B1_E-3_Disclosure_Data_FY2020_Q2.xlsx", guess_max = 272089) } oo <- dd %>% filter(SECONDARY_ENTITY == "Y") %>% mutate(SECONDARY_ENTITY_BUSINESS_NAME = str_to_upper(SECONDARY_ENTITY_BUSINESS_NAME)) %>% filter(str_detect(SECONDARY_ENTITY_BUSINESS_NAME, 'WELLS ')) %>% filter(!str_detect(SECONDARY_ENTITY_BUSINESS_NAME, 'WELLS FARGO')) %>% group_by(SECONDARY_ENTITY_BUSINESS_NAME) %>% summarize(WORKERS = sum(TOTAL_WORKER_POSITIONS), APPLICATIONS = n()) %>% arrange(desc(APPLICATIONS)) print(head(as.data.frame(oo), 200))Following is the resultant output:
SECONDARY_ENTITY_BUSINESS_NAME WORKERS APPLICATIONS 1 WELLS FARGO 1 1 2 WELLS FRGO BANK, N.A. 1 1 3 WELLS VEHICLE ELECTRONICS 1 1As can be seen, a single misspellings of WELLS FRGO is caught in the second line. The first line contains a double-space between WELLS and FARGO and would have been caught by the final code shown previously which converts all multiple spaces to a single space. The third line obviously refers to another company.
[1] "Search CASE_STATUS for CERTIFIED" [1] "Group by EMPLOYER_NAME2" [1] "" [1] "H-1B DISCLOSURE DATA, FY 2020" [1] "(CASE_STATUS=CERTIFIED)" [1] "" [1] "SUM(TOTAL_WORKERS) = 426,203" [1] "SUM(APPLICATIONS) = 257,283" [1] "NUMBER OF ROWS = 38,382" [1] "MEDIAN(LOW_WAGE) = NULL" [1] "MEAN(LOW_WAGE) = NA" [1] "" EMPLOYER_NAME2 WORKERS APPLICATIONS 1 QUALCOMM TECHNOLOGIES 29737 458 2 DELOITTE CONSULTING 9071 4273 3 ORACLE AMERICA 8733 363 4 GOOGLE 7158 7053 5 NVIDIA 6954 285 6 APPLE 6888 2908 7 FACEBOOK 6594 2519 8 CISCO SYSTEMS 6274 1116 9 COGNIZANT TECHNOLOGY SOLUTIONS US 5521 5521 10 AMAZON.COM 5467 4783 11 QUALCOMM ATHEROS 5453 81 12 ERNST & YOUNG U.S 5113 5113 13 WESTERN DIGITAL TECHNOLOGIES 4960 165 14 MICROSOFT 4564 4414 15 SERVICENOW 4401 239 16 MCKINSEY & COMPANY INC UNITED STATES 4024 261 17 SYNOPSYS 3266 85 18 DELOITTE & TOUCHE 2741 893 19 GILEAD SCIENCES 2529 255 20 UBER TECHNOLOGIES 2339 444 21 ARM 2325 99 22 QUALCOMM INNOVATION CENTER 2200 32 23 DXC 2135 153 24 INTEL 2036 778 25 SAMSUNG SEMICONDUCTOR 1931 88 26 HEWLETT PACKARD ENTERPRISE 1759 301 27 HGST 1753 50 28 CYPRESS SEMICONDUCTOR 1681 76 29 MENTOR GRAPHICS 1657 73 30 JPMORGAN CHASE 1613 1462 31 WAL-MART ASSOCIATES 1586 1586 32 ANTHEM 1583 1496 33 WELLS FARGO 1583 1467 34 QUALCOMM 1565 61 35 SALESFORCE.COM 1528 1316 36 PNC BANK 1456 333 37 WAYFAIR 1427 220 38 FORD MOTOR 1334 923 39 AMERICAN EXPRESS 1276 1124 40 DELOITTE TAX 1260 378 41 EPAM SYSTEMS 1227 96 42 KEYSIGHT TECHNOLOGIES 1194 79 43 COMPUTER SCIENCES 1181 46 44 CAPITAL ONE 1176 1119 45 WORKDAY 1050 130 46 PAYPAL 1027 731 47 INTERNATIONAL BUSINESS MACHINES 1027 1027 48 APPLIED MATERIALS 1023 198 49 LINKEDIN 1022 755 50 AT&T 986 879 51 UATC 972 64 52 VERIZON 932 807 53 GOLDMAN SACHS 914 909 54 HP 907 174 55 INFORMATICA 902 59 56 ITELLIGENCE 900 42 57 AMAZON WEB 874 852 58 KAISER PERMANENTE 865 387 59 INFOSYS 861 631 60 BLOOMBERG L.P 823 272 61 ADOBE 820 265 62 VMWARE 814 728 63 QUORA 800 24 64 AVAIL MEDSYSTEMS 750 15 65 OATH HOLDINGS 743 422 66 EBAY 722 577 67 INTUIT 713 385 68 CHARTER COMMUNICATIONS 708 612 69 KPMG 700 478 70 BANK OF AMERICA 677 658 71 BANK OF AMERICA N.A 675 630 72 FANNIE MAE 675 508 73 CITIGROUP 668 644 74 EXPEDIA 665 257 75 FIDELITY INVESTMENTS 664 439 76 CITY NATIONAL BANK 655 51 77 NIKE 637 470 78 NEW YORK CITY DEPARTMENT OF EDUCATION 617 39 79 WALMART 617 486 80 LIBERTY MUTUAL INSURANCE 613 162 81 NUTANIX 601 130 82 A.T KEARNEY 601 13 83 CHARLES SCHWAB 599 398 84 PALO ALTO NETWORKS 583 139 85 COMCAST 578 435 86 CIGNA 571 289 87 KITE PHARMA 563 31 88 CGI TECHNOLOGIES & SOLUTIONS 562 91 89 BLACKROCK FINANCIAL MANAGEMENT 559 559 90 BROADCOM 549 83 91 UNITED AIRLINES 540 277 92 FEDEX 534 480 93 IBM 514 514 94 CVS HEALTH 513 485 95 VISA TECHNOLOGY & OPERATIONS 502 356 96 SNOWFLAKE 496 24 97 UNITED SERVICES AUTOMOBILE ASSOCIATION 491 374 98 MACHINE ZONE 490 24 99 CADENCE DESIGN SYSTEMS 485 177 100 PNC 480 136 101 PRICEWATERHOUSECOOPERS 469 438 102 COMCAST CABLE COMMUNICATIONS 462 462 103 DOLBY LABORATORIES 457 26 104 METLIFE 452 243 105 PRICEWATERHOUSECOOPERS ADVISORY 440 440 106 MICRON 437 435 107 VERIZON SOURCING 436 272 108 PFIZER 435 214 109 CUMMINS 433 431 110 MORGAN STANLEY SERVICES GROUP 429 429 111 HOULIHAN LOKEY 426 18 112 MANHATTAN ASSOCIATES 425 47 113 CERNER 423 423 114 T-MOBILE USA 414 368 115 AMERICAN AIRLINES 412 354 116 HUMANA 412 307 117 ADP 409 305 118 STATE STREET BANK & TRUST 409 356 119 AMGEN 406 392 120 ACCENTURE 401 396 121 A10 NETWORKS 400 16 122 ADVANCED MICRO DEVICES 397 386 123 WELLS FARGO BANK N.A 396 259 124 CVS PHARMACY 390 349 125 JOHNSON & JOHNSON 376 310 126 FCA US 364 243 127 SUNPOWER 364 22 128 CA 363 83 129 PHILIPS NORTH AMERICA 363 28 130 EQUIFAX 362 313 131 ADVANTEST AMERICA 361 17 132 KROGER 354 233 133 OPTUM 352 332 134 JUNIPER NETWORKS 346 240 135 TOYOTA 346 172 136 DISCOVER 346 337 137 MACY'S SYSTEMS & 339 196 138 AT & T 338 213 139 HCL AMERICA 335 335 140 GAP 332 203 141 CAPGEMINI AMERICA 326 326 142 VISA U.S.A 326 268 143 MASTERCARD 325 120 144 CREDIT SUISSE SECURITIES (USA) 320 308 145 JP MORGAN CHASE 316 302 146 AGILENT TECHNOLOGIES 313 26 147 TESLA 309 309 148 HOME DEPOT 309 299 149 STATE FARM 306 132 150 GENERAL MOTORS 305 300 151 MAYO CLINIC 305 305 152 CITIBANK N.A 301 273 153 SNAP 291 119 154 SUNTRUST BANKS 291 233 155 BOSTON CONSULTING GROUP 289 289 156 PROGRESSIVE INSURANCE 289 39 157 GENERAL ELECTRIC 289 280 158 MERCK 288 257 159 CATERPILLAR 286 261 160 TREASURE DATA 281 14 161 WELLS FARGO BANK 280 148 162 MASTERCARD INTERNATIONAL 279 177 163 HEALTH CARE SERVICE 272 215 164 NORTHERN TRUST 271 258 165 MICRO FOCUS 267 34 166 ABBVIE 267 232 167 T-MOBILE 266 200 168 TATA CONSULTANCY 264 260 169 NCR 263 91 170 FIAT CHRYSLER AUTOMOBILES 260 108 171 VANGUARD 257 209 172 SOUTHWEST AIRLINES 257 168 173 YODLEE 255 15 174 SAP AMERICA 253 253 175 DFS 252 252 176 AT&T OFFICE 249 9 177 CENTENE 247 238 178 ALLY FINANCIAL 244 149 179 LUMENTUM OPERATIONS 244 26 180 BOFA SECURITIES 240 240 181 MEDTRONIC 240 197 182 SPRINT 240 240 183 EXPRESS SCRIPTS 239 231 184 STATE FARM MUTUAL AUTOMOBILE INSURANCE 237 198 185 CISCO 237 113 186 COMCAST CABLE COMMUNICATIONS MANAGEMENT 236 192 187 CHEVRON 235 189 188 SLALOM 235 152 189 JM FAMILY ENTERPRISES 234 26 190 FORTINET 232 83 191 BAIN 232 58 192 TOYOTA MOTOR NORTH AMERICA 227 147 193 DELOITTE TRANSACTIONS & BUSINESS ANALYTI 225 75 194 SONY INTERACTIVE ENTERTAINMENT 223 156 195 AUTODESK 223 156 196 NATSOFT 223 223 197 ALLSTATE INSURANCE 223 141 198 CITRIX SYSTEMS 222 84 199 RIVIAN AUTOMOTIVE 221 202 200 MINDTREE 220 220 201 METROPOLITAN LIFE INSURANCE 220 193 202 MORGAN STANLEY 217 208 203 VERIZON COMMUNICATIONS 217 145 204 EMC 216 216 205 BARCLAYS 214 214 206 PAYCOM PAYROLL 213 53 207 CAPITAL GROUP COMPANIES 212 122 208 BOEING 208 170 209 WAYMO 207 203 210 FORUM CAPITAL MARKETS LLC (DBA WELLS FAR 207 207 211 ZURICH NORTH AMERICA 207 13 212 GUMGUM 206 10 213 TWILIO 203 58 214 FARMERS INSURANCE 202 45 215 COX AUTOMOTIVE 201 196 216 BEST BUY 200 194 217 COOPERATIVE REGIONS OF ORGANIC PRODUCER 200 5 218 FISERV 199 152 219 PACIFIC LIFE INSURANCE 199 27 220 SCHLUMBERGER 198 187 221 UCHICAGO ARGONNE 197 45 222 CARDINAL HEALTH 193 186 223 DELOITTE SERVICES LP 193 43 224 DISCOVER PRODUCTS 192 192 225 MUFG UNION BANK N.A 191 168 226 VERIZON DATA 190 190 227 TWITTER 190 161 228 U.S BANK NATIONAL ASSOCIATION 190 190 229 FIDELITY TECHNOLOGY GROUP 188 188 230 THERMO FISHER SCIENTIFIC 187 138 231 NATIONWIDE INSURANCE 185 185 232 LOWE'S COMPANIES 184 184 233 VANGUARD GROUP 184 177 234 TRAVELERS 184 180 235 NORDSTROM 183 183 236 UNIVERSITY OF MICHIGAN 181 181 237 PROGRESSIVE CASUALTY INSURANCE 177 61 238 CSC COVANSYS 176 7 239 FARMERS INSURANCE GROUP 176 153 240 BOXY CHARM 175 4 241 MIRACLE SOFTWARE SYSTEMS 173 90 242 TECH MAHINDRA (AMERICAS) 172 172 243 MOLINA HEALTHCARE 171 162 244 BDO USA 170 170 245 YELP 170 56 246 SPLUNK 170 117 247 MATHWORKS 170 170 248 TEXAS INSTRUMENTS 169 160 249 AKAMAI TECHNOLOGIES 168 168 250 UBS BUSINESS SOLUTIONS US 168 161 251 MCKESSON 168 163 252 HARTFORD 168 163 253 AECOM TECHNICAL 167 167 254 LYFT 167 157 255 SOUTHERN CALIFORNIA EDISON 167 118 256 PEPSICO 165 160 257 TRUIST BANK 164 117 258 IQVIA 162 153 259 ERICSSON 162 162 260 LINCOLN NATIONAL 160 76 261 SEMICONDUCTOR COMPONENTS INDUSTRIES 160 65 262 3M 159 145 263 GOVERNMENT EMPLOYEES INSURANCE 159 28 264 AIRBNB 158 156 265 PRUDENTIAL FINANCIAL 158 113 266 CYBERSOURCE 157 99 267 MASTECH DIGITAL TECHNOLOGIES INC A MASTE 156 26 268 FIDELITY MANAGEMENT & RESEARCH 156 156 269 NATIONWIDE MUTUAL INSURANCE 155 155 270 TARGET ENTERPRISE 153 153 271 BANK OF NEW YORK MELLON 153 153 272 SQUARE 152 152 273 AVAYA 152 37 274 NEW YORK LIFE INSURANCE 152 82 275 PENSANDO SYSTEMS 151 19 276 PACIFIC GAS & ELECTRIC 150 141 277 DELL USA L.P 149 143 278 ELI LILLY 148 113 279 HOME DEPOT U.S.A 148 61 280 BECTON DICKINSON 147 143 281 ZILLOW 147 147 282 ABBOTT LABORATORIES 147 137 283 NXP USA 146 146 284 STELLUS TECHNOLOGIES 146 8 285 ONCOR ELECTRIC DELIVERY 146 131 286 ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI 144 144 287 7-ELEVEN 144 134 288 AMERISOURCEBERGEN 143 138 289 MEMORIAL SLOAN KETTERING CANCER CENTER 140 140 290 BLUE SHIELD OF CALIFORNIA 140 108 291 MASSACHUSETTS MUTUAL LIFE INSURANCE 139 91 292 DROPBOX 139 139 293 UNIVERSITY OF CALIFORNIA SAN FRANCISCO 138 138 294 HOME DEPOT PRODUCT AUTHORITY 138 138 295 MARRIOTT INTERNATIONAL 137 121 296 INDEED 137 137 297 MOTOROLA SOLUTIONS 136 126 298 PROKARMA 136 136 299 DEERE 136 127 300 DOLBY LABORATORIES LICENSING 135 6
[1] "Search CASE_STATUS for CERTIFIED" [1] "Sort by TOTAL_WORKERS, Descending" [1] "" [1] "H-1B DISCLOSURE DATA, FY 2020" [1] "(CASE_STATUS=CERTIFIED)" [1] "" [1] "SUM(TOTAL_WORKERS) = 426,203" [1] "SUM(APPLICATIONS) = 0" [1] "NUMBER OF ROWS = 257,283" [1] "MEDIAN(LOW_WAGE) = 100,000" [1] "MEAN(LOW_WAGE) = 262,695" [1] "" CASE_STATUS EMPLOYER_NAME JOB_TITLE WORKERS PW_WAGE_LEVEL WAGE_RATE_FROM WAGE_PW WORKSITE_CITY STATE 1 Certified APPLE Software Developer, Systems Software 275 II 122408.00 1.0000 CUPERTINO CALIFORNIA 2 Certified APPLE Software Developer, Systems Software 275 II 122408.00 1.0000 CUPERTINO CALIFORNIA 3 Certified APPLE Software Developer, Systems Software 200 III 147534.00 1.0000 CUPERTINO CALIFORNIA 4 Certified QUALCOMM TECHNOLOGIES Systems Test Engineer 200 II 96616.00 1.0000 SAN DIEGO CALIFORNIA 5 Certified APPLE Software Developer, Applications 175 II 108784.00 1.0000 CUPERTINO CALIFORNIA 6 Certified APPLE Software Developer, Applications 175 III 131726.00 1.0000 CUPERTINO CALIFORNIA 7 Certified UBER TECHNOLOGIES SOFTWARE ENGINEER 175 II 119122.00 1.0000 SAN FRANCISCO CALIFORNIA 8 Certified APPLE SOFTWARE DEVELOPER, APPLICATIONS 175 II 108874.00 1.0008 CUPERTINO CALIFORNIA 9 Certified APPLE Software Developer, Applications 175 III 131726.00 1.0000 CUPERTINO CALIFORNIA 10 Certified APPLE Electrical Engineer 150 III 132746.00 1.0000 CUPERTINO CALIFORNIA 11 Certified APPLE Electrical Engineer 150 II 106330.00 1.0000 CUPERTINO CALIFORNIA 12 Certified UATC SOFTWARE ENGINEER 150 II 119122.00 1.0000 SAN FRANCISCO CALIFORNIA 13 Certified SYNOPSYS R&D Engineer 150137201.00 1.0000 MOUNTIAN VIEW CALIFORNIA 14 Certified SYNOPSYS Applications Engineer 150 125494.00 1.0000 MOUNTAIN VIEW CALIFORNIA 15 Certified APPLE ELECTRICAL ENGINEER 150 II 106330.00 1.0000 CUPERTINO CALIFORNIA 16 Certified APPLE Electronics Engineer, Except Computer 125 II 111634.00 1.0000 CUPERTINO CALIFORNIA 17 Certified APPLE Electronics Engineer, Except Computer 125 III 134597.00 1.0000 CUPERTINO CALIFORNIA 18 Certified UBER TECHNOLOGIES DATA ANALYST (DATA SCIENTIST) 125 II 97906.00 1.0000 SAN FRANCISCO CALIFORNIA 19 Certified APPLE Electronics Engineer, Except Computer 125 II 111634.00 1.0000 CUPERTINO CALIFORNIA 20 Certified AMAZON.COM SOFTWARE DEVELOPMENT ENGINEER I 121 I 93184.00 1.0000 SEATTLE WASHINGTON 21 Certified APPLIED MATERIALS Process Engineer 115 116939.00 1.0000 SANTA CLARA CALIFORNIA 22 Certified APPLE Software Developer, Systems Software 100 IV 172640.00 1.0000 CUPERTINO CALIFORNIA 23 Certified UBER TECHNOLOGIES SOFTWARE ENGINEER 100 III 144040.00 1.0000 SAN FRANCISCO CALIFORNIA 24 Certified UBER TECHNOLOGIES SENIOR SOFTWARE ENGINEER 100 II 119122.00 1.0000 SAN FRANCISCO CALIFORNIA 25 Certified UBER TECHNOLOGIES SOFTWARE ENGINEER 100 II 108784.00 1.0000 PALO ALTO CALIFORNIA 26 Certified UBER TECHNOLOGIES SENIOR SOFTWARE ENGINEER 100 II 108784.00 1.0000 PALO ALTO CALIFORNIA 27 Certified UBER TECHNOLOGIES DATA ANALYST (DATA SCIENTIST) 100 II 89773.00 1.0000 PALO ALTO CALIFORNIA 28 Certified UATC SOFTWARE ENGINEER 100 III 144040.00 1.0000 SAN FRANCISCO CALIFORNIA 29 Certified UATC SENIOR SOFTWARE ENGINEER 100 II 119122.00 1.0000 SAN FRANCISCO CALIFORNIA 30 Certified UATC DATA ANALYST (DATA SCIENTIST) 100 II 97906.00 1.0000 SAN FRANCISCO CALIFORNIA 31 Certified QUALCOMM TECHNOLOGIES ASICS Engineer 100 II 108971.00 1.0000 SAN DIEGO CALIFORNIA 32 Certified QUALCOMM TECHNOLOGIES Staff Software Engineer 100 III 116646.00 1.0000 SAN DIEGO CALIFORNIA 33 Certified QUALCOMM TECHNOLOGIES Senior ASICs Engineer 100 II 108971.00 1.0000 SAN DIEGO CALIFORNIA 34 Certified EXPEDIA SOFTWARE DEVELOPMENT ENGINEER 100 98421.00 1.0000 SEATTLE WASHINGTON 35 Certified QUALCOMM ATHEROS Senior Software Engineer 100 II 122408.00 1.0000 SANTA CLARA CALIFORNIA 36 Certified QUALCOMM ATHEROS Senior Asics Engineer 100 II 111634.00 1.0000 SANTA CLARA CALIFORNIA 37 Certified QUALCOMM TECHNOLOGIES Senior Staff Software Applications Engin 100 IV 135800.00 1.0616 SAN DIEGO CALIFORNIA 38 Certified QUALCOMM ATHEROS Senior Staff Systems Engineer 100 IV 147306.00 1.0000 SAN DIEGO CALIFORNIA 39 Certified QUALCOMM INNOVATION CENTER Staff Software Engineer 100 III 116646.00 1.0000 SAN DIEGO CALIFORNIA 40 Certified QUALCOMM TECHNOLOGIES Senior Staff Modem Engineer 100 IV 166100.00 1.1276 SAN DIEGO CALIFORNIA 41 Certified QUALCOMM TECHNOLOGIES Senior Staff Modem Software Engineer 100 IV 152400.00 1.1149 SAN DIEGO CALIFORNIA 42 Certified QUALCOMM TECHNOLOGIES Modem Software Engineer 100 II 96616.00 1.0000 SAN DIEGO CALIFORNIA 43 Certified QUALCOMM TECHNOLOGIES Senior Hardware Applications Engineer 100 II 108971.00 1.0000 SAN DIEGO CALIFORNIA 44 Certified QUALCOMM TECHNOLOGIES Modem Engineer 100 II 108971.00 1.0000 SAN DIEGO CALIFORNIA 45 Certified QUALCOMM TECHNOLOGIES Senior Software Engineer 100 II 96616.00 1.0000 SAN DIEGO CALIFORNIA 46 Certified QUALCOMM TECHNOLOGIES Senior Staff Software Engineer 100 IV 138600.00 1.0139 SAN DIEGO CALIFORNIA 47 Certified QUALCOMM TECHNOLOGIES Senior Staff Systems Test Engineer 100 IV 140200.00 1.0256 SAN DIEGO CALIFORNIA 48 Certified QUALCOMM TECHNOLOGIES Software Engineer 100 II 96616.00 1.0000 SAN DIEGO CALIFORNIA 49 Certified QUALCOMM TECHNOLOGIES Senior Staff Systems Engineer 100 IV 147306.00 1.0000 SAN DIEGO CALIFORNIA 50 Certified QUALCOMM TECHNOLOGIES Senior Systems Test Engineer 100 II 97700.00 1.0112 SAN DIEGO CALIFORNIA
[1] "Search CASE_STATUS for CERTIFIED" [1] "Sort by WAGE_PW, Descending" [1] "" [1] "H-1B DISCLOSURE DATA, FY 2020" [1] "(CASE_STATUS=CERTIFIED)" [1] "" [1] "SUM(TOTAL_WORKERS) = 426,203" [1] "SUM(APPLICATIONS) = 0" [1] "NUMBER OF ROWS = 257,283" [1] "MEDIAN(LOW_WAGE) = 100,000" [1] "MEAN(LOW_WAGE) = 262,695" [1] "" CASE_STATUS EMPLOYER_NAME JOB_TITLE WORKERS PREVAILING_WAGE PW_WAGE_LEVEL WAGE_RATE_FROM WAGE_PW WORKSITE_CITY STATE 1 Certified PAYPAL DATA Product Strategist 1 104499.00 IV 1.204781e+09 11529.1122 TEXAS TEXAS 2 Certified EMETEORS Software Developer 1 39.17 II 9.000000e+04 2297.6768 WINDSOR MILLS MARYLAND 3 Certified UNIVERSITY PRIMARY CARE PRACTICES PHYSICIAN 1 100.00 5 2.099968e+05 2099.9680 ASHLAND OH 4 Certified PAYPAL DATA Product Strategist 1 92955.00 I 1.204781e+07 129.6090 AUSTIN TEXAS 5 Certified LOWE'S COMPANIES IT SOFTWARE ENGINEER 1 89918.00 II 1.130000e+07 125.6701 CHARLOTTE NORTH CAROLINA 6 Certified NXP USA Customer Application Support 1 111634.00 II 1.339197e+07 119.9632 SAN JOSE CALIFORNIA 7 Certified UNIVERSITY OF ALABAMA AT BIRMINGHAM Assistant Professor 1 35.65 II 7.820000e+02 21.9355 BIRMINGHAM ALABAMA 8 Certified BANK OF NEW YORK MELLON Global Head of Investor Relations 1 254405.00 IV 4.000000e+06 15.7230 NEW YORK NEW YORK 9 Certified STUDIO GANG ARCHITECTS Junior Architechtural Designer 1 45510.00 I 6.800000e+05 14.9418 CHICAGO ILLINOIS 10 Certified COMMONWEALTH HEALTHCARE PHYSICIAN (PSYCHIATRIST) 1 15080.002.000000e+05 13.2626 SAIPAN NORTHERN MARIANA ISLANDS 11 Certified NERDWALLET FINANCIAL ANALYST 1 75421.00 I 9.500000e+05 12.5960 SAN FRANCISCO CALIFORNIA 12 Certified CLEVELAND CLINIC Staff Gastroenterologist 1 43784.00 II 5.500000e+05 12.5617 CLEVELAND OHIO 13 Certified NORTH MISSISSIPPI MEDICAL CENTER CARDIOLOGIST & ELECTROPHYSIOLOGIST 1 40290.00 II 5.000000e+05 12.4100 TUPELO MISSISSIPPI 14 Certified UBS SECURITIES DIRECTOR, ALM BUSINESS PROCESS ANALYST 1 122200.00 III 1.500000e+06 12.2750 STAMFORD CONNECTICUT 15 Certified ITECH US Software Engineer 1 87339.00 III 1.065000e+06 12.1939 KANSAS CITY MISSOURI 16 Certified INNOVIS HEALTH Interventional Cardiologist 1 58386.00 II 7.100000e+05 12.1604 FARGO NORTH DAKOTA 17 Certified IOWA PHYSICIANS CLINIC MEDICAL FOUNDATIO CARDIOLOGIST 1 58053.00 II 7.000000e+05 12.0579 DES MOINES IOWA 18 Certified AKORN SENIOR ANALYTICAL SCIENTST I 1 76752.00 II 9.100523e+05 11.8570 CRANBURY NEW JERSEY 19 Certified AMAZON.COM Program Manager III 1 113443.00 IV 1.315000e+06 11.5917 SEATTLE WASHINGTON 20 Certified INFOGAIN TECHNICAL PROJECT MANAGER 1 109554.00 II 1.267580e+06 11.5704 MOUNTAIN VIEW CALIFORNIA 21 Certified AMAZON.COM SENIOR MANAGER PROGRAM MANAGMENT 1 139048.00 III 1.600000e+06 11.5068 SEATTLE WASHINGTON 22 Certified FACEBOOK Software Engineer 1 168958.00 IV 1.940668e+06 11.4861 MENLO PARK CALIFORNIA 23 Certified SAPIENT Senior Interactive Developer L2 1 117021.00 III 1.325883e+06 11.3303 NEW YORK NEW YORK 24 Certified OHIO STATE UNIVERSITY Professor - Physician 1 63900.00 I 7.230000e+05 11.3146 COLUMBUS OHIO 25 Certified DULUTH CLINIC Cardiologist-EP 1 58386.00 II 6.600000e+05 11.3041 DULUTH MINNESOTA 26 Certified WALTER P MOORE & ASSOCIATES Graduate Engineer 1 2316.80 I 2.557693e+04 11.0398 AUSTIN TEXAS 27 Certified PROMETRIKA Statistical Applications Developer 1 91874.00 II 1.000000e+06 10.8845 CAMBRIDGE MASSACHUSETTS 28 Certified INFRRD Software Developer 1 93891.00 II 1.000000e+06 10.6506 LOS ANGELES CALIFORNIA 29 Certified MEDICAL INSTRUMENT DEVELOPMENT LABORATOR R&D Engineer 1 79789.00 I 8.300000e+05 10.4024 SAN LEANDRO CALIFORNIA 30 Certified ARGUS INFORMATION & ADVISORY Senior Manager 1 97906.00 II 1.007000e+06 10.2854 SAN FRANCISCO CALIFORNIA 31 Certified FOOTPRINTS EDUCATION Instructional Coordinator 1 50856.00 I 5.160000e+05 10.1463 SUNNYVALE CALIFORNIA 32 Certified COGNIZANT TECHNOLOGY SOLUTIONS US Senior Systems Analyst JC60 1 59238.00 II 6.000000e+05 10.1286 BENTONVILLE ARKANSAS 33 Certified KINFOLK CONSTRUCTION MANAGER 1 148574.00 IV 1.500000e+06 10.0960 VENICE CALIFORNIA 34 Certified ALTRU HEALTH SYSTEM Neurosurgeon 1 89440.00 IV 9.000000e+05 10.0626 GRAND FORKS NORTH DAKOTA 35 Certified PAYPAL Lead Decision Scientist 1 134202.00 III 1.350000e+06 10.0595 NEW YORK NEW YORK 36 Certified DELL MARKETING L.P Software Engineer 2 1 94738.00 9.519008e+05 10.0477 SANTA CLARA CALIFORNIA 37 Certified BRILLIO Test Lead 1 109554.00 II 1.100000e+06 10.0407 PALO ALTO CALIFORNIA 38 Certified XORIANT SOFTWARE ENGINEER 1 91686.00 II 9.200000e+05 10.0342 ORLANDO FLORIDA 39 Certified CLIENTSERVER TECHNOLOGY SOLUTIONS Programmer Analyst 1 72509.00 II 7.260000e+05 10.0126 SAN ANTONIO TEXAS 40 Certified HP Software Designer 5 94765.00 II 9.477650e+05 10.0012 SAN DIEGO CALIFORNIA 41 Certified DELTA REGIONAL MEDICAL CENTER GENERAL SURGEON 1 40290.00 II 4.000000e+05 9.9280 GREENVILLE MISSISSIPPI 42 Certified AURORA MEDICAL GROUP Gastroenterologist 1 58386.00 II 5.564000e+05 9.5297 SHEBOYGAN WISCONSIN 43 Certified UNIVERSITY HOSPITALS MEDICAL GROUP Cardiothoracic Transplant Director 1 78978.00 IV 7.500000e+05 9.4963 CLEVELAND OHIO 44 Certified UNIVERSITY OF PITTSBURGH PHYSICIANS Assistant Professor 1 49.31 III 4.642800e+02 9.4155 PITTSBURGH PENNSYLVANIA 45 Certified INDIANA BIOSCIENCES RESEARCH INSTITUTE Senior Executive for Innovation and Disc 1 74027.00 IV 6.825000e+05 9.2196 INDIANAPOLIS INDIANA 46 Certified INDIANA BIOSCIENCES RESEARCH INSTITUTE Senior Executive for Innovation and Disc 1 74027.00 IV 6.825000e+05 9.2196 INDIANAPOLIS INDIANA 47 Certified UNIVERSITY OF FLORIDA PROGRAM DIRECTOR AND CLINICAL PROFESSOR 1 94950.00 IV 8.560000e+05 9.0153 GAINESVILLE FLORIDA 48 Certified UNIVERSITY OF FLORIDA PROGRAM DIRECTOR AND CLINICAL PROFESSOR 1 94950.00 IV 8.560000e+05 9.0153 GAINESVILLE FLORIDA 49 Certified INNOVIS HEALTH Psychiatrist 1 28.07 II 2.500000e+02 8.9063 FARGO NORTH DAKOTA 50 Certified UNIVERSITY OF PITTSBURGH Assistant Professor 1 24880.00 I 2.196000e+05 8.8264 PITTSBURGH PENNSYLVANIA 51 Certified ALLEN MEMORIAL HOSPITAL Interventional Radiologist 1 58053.00 II 5.100000e+05 8.7851 WATERLOO IOWA 52 Certified NETFLIX Computer Graphics Pipeline Lead 1 71178.00 IV 6.000000e+05 8.4296 LOS ANGELES CALIFORNIA 53 Certified MISSISSIPPI BAPTIST MEDICAL CENTER INTERNAL MEDICINE PHYSICIAN-NOCTURNIST 1 35818.00 II 3.000000e+05 8.3757 JACKSON MISSISSIPPI 54 Certified SOUTH CENTRAL REGIONAL MEDICAL CENTER GENERAL SURGEON 1 35818.00 II 3.000000e+05 8.3757 LAUREL MISSISSIPPI 55 Certified PRICEWATERHOUSECOOPERS Advisory Principal 1 98072.00 IV 8.047500e+05 8.2057 SAN DIEGO CALIFORNIA 56 Certified GROUP HEALTH PLAN Gastroenterologist 1 58386.00 II 4.750000e+05 8.1355 ST. PAUL MINNESOTA 57 Certified CLEVELAND CLINIC Associate Staff 1 43784.00 II 3.500000e+05 7.9938 CLEVELAND OHIO 58 Certified NEW YORK UNIVERSITY SCHOOL OF MEDICINE Division Chief of Pediatric Orthopedic S 1 101379.00 IV 8.075000e+05 7.9652 NEW YORK NEW YORK 59 Certified NEW YORK UNIVERSITY SCHOOL OF MEDICINE Division Chief of Pediatric Orthopedic S 1 101379.00 IV 8.075000e+05 7.9652 NEW YORK NEW YORK 60 Certified AURORA MEDICAL GROUP Critical Care Medicine Physician 1 58386.00 II 4.600000e+05 7.8786 GREEN BAY WISCONSIN 61 Certified AURORA MEDICAL GROUP Critical Care Medicine Physician 1 58386.00 II 4.599840e+05 7.8783 GREEN BAY WISCONSIN 62 Certified TALLAHASSEE MEMORIAL HEALTHCARE Physican 1 44658.00 IV 3.500000e+05 7.8373 TALLAHASSEE FLORIDA 63 Certified LSU HEALTH SCIENCES CENTER Associate Professor of Clinical Anesthes 1 52640.00 II 4.088890e+05 7.7676 SHREVEPORT LOUISIANA 64 Certified IOWA PHYSICIANS CLINIC MEDICAL FOUNDATIO General Surgeon 1 58053.00 II 4.500000e+05 7.7515 SIOUX CITY IOWA 65 Certified IOWA PHYSICIANS CLINIC MEDICAL FOUNDATIO Pulmonary/Critical Care Physician 1 58053.00 II 4.500000e+05 7.7515 VINTON IOWA 66 Certified SANFORD CLINIC NORTH Anesthesiologist 1 59946.00 II 4.614030e+05 7.6970 FARGO NORTH DAKOTA 67 Certified GOLDMAN SACHS GROUP MANAGING DIRECTOR 1 197142.00 IV 1.500000e+06 7.6087 NEW YORK NEW YORK 68 Certified UNIVERSITY OF FLORIDA PROGRAM DIRECTOR AND CLINICAL PROFESSOR 1 112653.00 IV 8.560000e+05 7.5986 GAINESVILLE FLORIDA 69 Certified HENRY FORD HEALTH SYSTEM Radiologist 1 56638.00 III 4.248000e+05 7.5003 DETROIT MICHIGAN 70 Certified UMASS MEMORIAL MEDICAL GROUP Internal Medicine Physician 1 54163.00 I 4.056980e+05 7.4903 WORCESTER MASSACHUSETTS 71 Certified AURORA MEDICAL GROUP Abdominal Transplant Surgeon 1 58386.00 II 4.350000e+05 7.4504 MILWAUKEE WISCONSIN 72 Certified NORTH MISSISSIPPI MEDICAL CENTER INTERNAL MEDICINE PHYSICIAN-HOSPITALIST 1 40290.00 II 3.000000e+05 7.4460 TUPELO MISSISSIPPI 73 Certified NETFLIX VP, HR Business Partner 1 163197.00 IV 1.200000e+06 7.3531 LOS ANGELES CALIFORNIA 74 Certified CRAVATH SWAINE & MOORE ATTORNEY/PARTNER 1 218046.00 IV 1.600000e+06 7.3379 NEW YORK NEW YORK 75 Certified HERBERT SMITH FREEHILLS NEW YORK Partner 1 218046.00 IV 1.586925e+06 7.2779 NEW YORK NEW YORK 76 Certified HERBERT SMITH FREEHILLS NEW YORK Partner 1 218046.00 IV 1.586925e+06 7.2779 NEW YORK NEW YORK 77 Certified CARNEGIE MELLON UNIVERSITY Assistant Professor of Business Technolo 1 24880.00 I 1.770000e+05 7.1141 PITTSBURGH PENNSYLVANIA 78 Certified DEUTSCHE BANK SECURITIES Managing Director 1 254405.00 IV 1.800000e+06 7.0753 NEW YORK NEW YORK 79 Certified TWEEDY BROWNE Analyst 1 122928.00 III 8.600000e+05 6.9960 STAMFORD CONNECTICUT 80 Certified OCHSNER CLINIC FOUNDATION Cardiology - Staff Physician 1 58386.00 II 4.000000e+05 6.8510 KENNER LOUISIANA 81 Certified DECATUR MEMORIAL HOSPITAL Cardiologist 1 87693.00 IV 6.000000e+05 6.8421 DECATUR ILLINOIS 82 Certified DEACONESS HOSPITAL Hospitalist 1 44034.00 I 3.000000e+05 6.8129 NEWBURGH INDIANA 83 Certified MEDICAL ONCOLOGY ASSOCIATES P.S Medical Oncologist Physician 1 65998.00 III 4.450000e+05 6.7426 SPOKANE WASHINGTON 84 Certified UNIVERSITY OF OKLAHOMA HEALTH SCIENCES C ASSISTANT PROFESSOR 1 55807.00 II 3.750000e+05 6.7196 OKLAHOMA CITY OKLAHOMA 85 Certified MAYO CLINIC Cardiologist (Senior Associate Consultan 1 87110.00 IV 5.852500e+05 6.7185 ROCHESTER MINNESOTA 86 Certified TEST Test Job 1 15080.00 1.000000e+05 6.6313 TEST CITY ALABAMA 87 Certified HENRY FORD HEALTH SYSTEM Gynecology Oncology Physician 1 56638.00 III 3.750000e+05 6.6210 DETROIT MICHIGAN 88 Certified INSURANCE SERVICES OFFICE QA Analyst III 1 16021.00 1.060210e+05 6.6176 JERSEY CITY NEW JERSEY 89 Certified UNIVERSITY OF OKLAHOMA HEALTH SCIENCES C ASSISTANT PROFESSOR 1 55807.00 II 3.687500e+05 6.6076 OKLAHOMA CITY OKLAHOMA 90 Certified PINE BELT MENTAL HEALTHCARE RESOURCES CHILD AND ADOLESCENT PSYCHIATRIST 1 35818.00 II 2.350000e+05 6.5609 HATTIESBURG MISSISSIPPI 91 Certified UNIVERSITY OF PITTSBURGH PHYSICIANS Clinical Assistant Professor- Radiology 1 26.01 IV 1.700000e+02 6.5359 COPLEY OHIO 92 Certified VIRGINIA MASON MEDICAL CENTER Gastrointestinal Medical Oncologist and 1 75213.00 IV 4.900000e+05 6.5148 SEATTLE WASHINGTON 93 Certified DEACONESS HOSPITAL Pulmonology/Critical Care Physician & Me 1 58386.00 II 3.750000e+05 6.4228 EVANSVILLE INDIANA 94 Certified HSHS MEDICAL GROUP Intensivist 1 61797.00 II 3.950000e+05 6.3919 SPRINGFIELD ILLINOIS 95 Certified HARTFORD HEALTHCARE MEDICAL GROUP Physician (Interventional and Non-Invasi 1 60736.00 I 3.840000e+05 6.3224 HARTFORD CONNECTICUT 96 Certified TRUSTEES OF THE UNIVERSITY OF PENNSYLVAN Assistant Professor 1 39510.00 I 2.482500e+05 6.2832 PHILADELPHIA PENNSYLVANIA 97 Certified HSHS MEDICAL GROUP Intensivist 1 61797.00 II 3.850000e+05 6.2301 SPRINGFIELD ILLINOIS 98 Certified CARILION MEDICAL CENTER Gastroenterologist 1 72592.00 IV 4.500000e+05 6.1990 ROANOKE VIRGINIA 99 Certified WILSON SONSINI GOODRICH & ROSATI PC Associate 1 49421.00 IV 3.050000e+05 6.1715 WASHINGTON DISTRICT OF COLUMBIA 100 Certified WEST VIRGINIA UNIVERSITY Assistant Professor (Internal Medicine) 1 62490.00 IV 3.840000e+05 6.1450 CHARLESTON WEST VIRGINIA