H-1B and Related Data by State

  1. Alabama
  2. Arizona
  3. California
  4. Colorado
  5. Connecticut
  6. Delaware
  7. District of Columbia
  8. Florida
  9. Georgia
  10. Idaho
  11. Illinois
  12. Iowa
  13. Kansas
  14. Massachusetts
  15. Montana
  16. New Jersey
  17. New York
  18. North Carolina
  19. Ohio
  20. South Carolina
  21. Tennessee
  22. Texas
  23. Virginia
  24. Washington

FY 2019 Disclosure Data, October 1, 2018 through March 31, 2019

States and Territories, sorted by Total Workers of All Certified Labor Condition Applications (LCAs), FY 2019

   STATE WORKERS APPLICATIONS
1     CA  184896        76546
2     TX   64105        36797
3     NY   47474        32944
4     NJ   30349        22511
5     WA   29115        16658
6     IL   27605        18638
7     FL   23267        12403
8     MA   22937        14810
9     PA   21127        12520
10    GA   18712        12748
11    NC   17894        11668
12    MI   16233        11673
13    VA   15663        10462
14    OH   15069         9305
15    AZ    9303         6572
16    CT    8951         5924
17    CO    8211         4267
18    MN    7785         5928
19    MO    6608         5156
20    OR    6512         2953
21    MD    6343         5603
22    TN    6266         4103
23    IN    5982         4490
24    WI    5253         4044
25    UT    3345         2288
26    AR    3153         2495
27    LA    3065          984
28    DC    2987         2166
29    DE    2478         1864
30    IA    2474         1896
31    SC    2388         1909
32    KY    2302         1674
33    RI    1893         1440
34    KS    1738         1402
35    NE    1568         1268
36    NH    1390          973
37    AL    1300         1014
38    ID    1289          546
39    OK    1239          957
40    NV    1189          965
41    MS    1130          443
42    NM     658          514
43    WV     360          276
44    ND     326          226
45    ME     326          290
46    HI     299          272
47    SD     232          130
48    VT     198          198
49    MT     185           97
50    GU     174          170
51    WY     107           58
52    AK      82           78
53    PR      61           61
54    MP      50           48
55    VI      17           15
56         3            3
57    PW       1            1

Finding the Names of Companies where H-1B Holders are Working, even if they're Employed by a Another Company, FY 2019

As stated in an August 5, 2019 Bloomberg Law article, the Labor Department "has begun publishing the names of companies where H-1B holders are working, even if they're employed by another company that provides staffing or consulting services". This is done via H-1B disclosure data and began with fiscal year (FY) 2019.

I've added the capability to look at this data with the R Shiny app at https://labor.shinyapps.io/lca18/. By default, the app will load FY 2019 data. Selecting EMPLOYER_NAME in the "Group by" select list will output a table of which the following is the top 50 employers in FY 2019, sorted by Total Workers:

[1] "Search CASE_STATUS for CERTIFIED"
[1] ""
[1] "H-1B DISCLOSURE DATA, FY 2019"
[1] "(CASE_STATUS=CERTIFIED)"
[1] ""
[1] "SUM(TOTAL_WORKERS) = 643,667"
[1] "NUMBER OF ROWS     = 50,725"
[1] "MEDIAN(LOW_WAGE)   = NULL"
[1] "MEAN(LOW_WAGE)     = NA"
[1] ""
                               EMPLOYER_NAME WORKERS APPLICATIONS
1                    DELOITTE CONSULTING LLP   45622         4007
2                                 APPLE INC.   22050          737
3                            INFOSYS LIMITED   16127        16127
4     COGNIZANT TECHNOLOGY SOLUTIONS US CORP   15619        15619
5                QUALCOMM TECHNOLOGIES, INC.   14412          264
6                                KFORCE INC.   13113          504
7          TATA CONSULTANCY SERVICES LIMITED   11116         7191
8                              WIPRO LIMITED   10455         3042
9                        CISCO SYSTEMS, INC.    9559          515
10                 AMAZON.COM SERVICES, INC.    9181         4130
11                         HCL AMERICA, INC.    7419         2821
12                                GOOGLE LLC    7197         7197
13                     CAPGEMINI AMERICA INC    6316         5342
14                        NVIDIA CORPORATION    6145          232
15                   UBER TECHNOLOGIES, INC.    5374          868
16                            FACEBOOK, INC.    5120         1314
17                    ERNST & YOUNG U.S. LLP    5115         5067
18                             ACCENTURE LLP    5065         3421
19                      ORACLE AMERICA, INC.    4743          285
20                            SYNOPSYS, INC.    4653          125
21                    QUALCOMM ATHEROS, INC.    4560           91
22                         INTEL CORPORATION    4042          969
23                       MPHASIS CORPORATION    3714          916
24        HEWLETT PACKARD ENTERPRISE COMPANY    3676          140
25        WESTERN DIGITAL TECHNOLOGIES, INC.    3596          142
26                              CYIENT, INC.    3544          218
27                             BIRLASOFT INC    3460          167
28                           IBM CORPORATION    3383         3383
29                                   HP INC.    3279           93
30                          SERVICENOW, INC.    3268          157
31                     MICROSOFT CORPORATION    3061         3061
32          LARSEN & TOUBRO INFOTECH LIMITED    2953         2597
33       CGI TECHNOLOGIES AND SOLUTIONS INC.    2747          293
34                   APPLIED MATERIALS, INC.    2648          302
35  MASTECH DIGITAL TECHNOLOGIES, INC., A MA    2598          433
36                       ORACLE AMERICA, INC    2279          206
37            MANAGEMENT HEALTH SYSTEMS, LLC    2262           55
38               DXC TECHNOLOGY SERVICES LLC    2197          186
39               MENTOR GRAPHICS CORPORATION    2169           91
40                        A.T. KEARNEY, INC.    2167           52
41    MCKINSEY & COMPANY, INC. UNITED STATES    2166          274
42                     DELOITTE & TOUCHE LLP    2132          677
43             TECH MAHINDRA (AMERICAS),INC.    2118         2118
44                RANDSTAD TECHNOLOGIES, LLC    2014          844
45             UBS BUSINESS SOLUTIONS US LLC    1874          231
46                             WORKDAY, INC.    1737           92
47                     GILEAD SCIENCES, INC.    1587           92
48                         AKT AMERICA, INC.    1563           30
49                 AMAZON WEB SERVICES, INC.    1541          785
50                                SYNTEL INC    1525         1525
The header specifies that these records are for certified Labor Condition Applications (LCAs). CERTIFIED is the default case status and is specified by setting the Search CASE_STATUS (or leaving it blank for all LCAs). The EMPLOYER_NAME column lists the actual employers of the H-1B workers as given in prior years. Note that most of the employers are either consulting firms or major tech companies. In the top 10, for example, Deloitte, Infosys, Congnizant, KForce, Tata, and Wipro are consulting firms. The other four (Apple, Qualcomm, Cisco, and Amazon) are major tech companies.

To see the employers associated with the worksites, change EMPLOYER_NAME to EMPLOYER_NAME2 in the "Group by" select list. One way to do this is to highlight EMPLOYER_NAME, hit the delete key, and then select EMPLOYER_NAME2. This will output a table of which the following is the top 50 "worksite employers" in FY 2019, sorted by Total Workers. This is the same as the prior table except that, if the H-1B worker is working for a client company, the name given is of that of the client company. One other difference is that EMPLOYER_NAME2 is cleaned by default. The default settings for the cleaning are displayed in the bottom section of the left sidepanel and can be changed. For example, note item 19 (ORACLE AMERICA, INC.) and item 36 (ORACLE AMERICA, INC) in the table above. These are both cleaned and combined to form item 8 (ORACLE AMERICA) below. This is done by removing all periods and then removing the trailing INC, one of the items specified in the "Delete Trailer in Employer" select list. Following is the first 50 lines of the cleaned table:

                              EMPLOYER_NAME2 WORKERS APPLICATIONS
1                        DELOITTE CONSULTING   42321         3986
2                                      APPLE   24758         2955
3                      QUALCOMM TECHNOLOGIES   14439          290
4                              CISCO SYSTEMS   11136         1547
5                                     KFORCE    9924          186
6                                 AMAZON COM    9535         4421
7                                     GOOGLE    7963         7824
8                             ORACLE AMERICA    6974          483
9                                     NVIDIA    6165          252
10         COGNIZANT TECHNOLOGY SOLUTIONS US    5637         5637
11                                  FACEBOOK    5528         1708
12                         UBER TECHNOLOGIES    5387          881
13                               HCL AMERICA    5191          593
14                                  SYNOPSYS    4659          131
15                          QUALCOMM ATHEROS    4560           91
16                                     INTEL    4389         1205
17                         ERNST & YOUNG U S    4159         4122
18                HEWLETT PACKARD ENTERPRISE    4056          314
19                                 MICROSOFT    3892         3568
20              WESTERN DIGITAL TECHNOLOGIES    3621          167
21                                        HP    3593          196
22                                SERVICENOW    3286          175
23                           INFOSYS LIMITED    3277         3277
24                               WELLS FARGO    2785         1732
25                                      AT&T    2692         1922
26                         APPLIED MATERIALS    2672          383
27                                       DXC    2425          392
28                          AMERICAN EXPRESS    2246         2021
29                               A T KEARNEY    2167           52
30      MCKINSEY & COMPANY INC UNITED STATES    2166          274
31                           MENTOR GRAPHICS    2156          102
32                         DELOITTE & TOUCHE    2109          670
33                 UBS BUSINESS SOLUTIONS US    1967          263
34                               CAPITAL ONE    1906         1544
35                                       IBM    1796         1793
36                                   WORKDAY    1750          105
37                         CAPGEMINI AMERICA    1739          776
38                           GILEAD SCIENCES    1738          239
39         TATA CONSULTANCY SERVICES LIMITED    1721         1496
40            CGI TECHNOLOGIES AND SOLUTIONS    1663          198
41                            SALESFORCE COM    1617         1019
42                                  QUALCOMM    1591           84
43                                AMAZON WEB    1569          813
44                               AKT AMERICA    1563           30
45                                 ACCENTURE    1497         1168
46                                    PAYPAL    1491          833
47                                    ANTHEM    1462         1342
48                             GOLDMAN SACHS    1436         1273
49                               INFORMATICA    1390           87
50                                   MPHASIS    1381           71
To see the original employer names, select "Clean None" in the select box above "Ignore in Employer". Following are the first 50 lines in the resulting table:
                              EMPLOYER_NAME2 WORKERS APPLICATIONS
1                    DELOITTE CONSULTING LLP   42049         3758
2                                 APPLE INC.   22191          874
3                QUALCOMM TECHNOLOGIES, INC.   14412          264
4                                KFORCE INC.    9913          184
5                        CISCO SYSTEMS, INC.    9617          555
6                  AMAZON.COM SERVICES, INC.    9180         4129
7                                 GOOGLE LLC    7269         7269
8                         NVIDIA CORPORATION    6145          232
9     COGNIZANT TECHNOLOGY SOLUTIONS US CORP    5634         5634
10                   UBER TECHNOLOGIES, INC.    5374          868
11                         HCL AMERICA, INC.    5141          543
12                            FACEBOOK, INC.    5122         1316
13                      ORACLE AMERICA, INC.    4694          276
14                            SYNOPSYS, INC.    4654          126
15                    QUALCOMM ATHEROS, INC.    4560           91
16                    ERNST & YOUNG U.S. LLP    4151         4114
17                         INTEL CORPORATION    4097         1019
18        HEWLETT PACKARD ENTERPRISE COMPANY    3626          139
19        WESTERN DIGITAL TECHNOLOGIES, INC.    3597          143
20                     MICROSOFT CORPORATION    3349         3142
21                                   HP INC.    3320           98
22                          SERVICENOW, INC.    3270          159
23                           INFOSYS LIMITED    3268         3268
24                   APPLIED MATERIALS, INC.    2579          294
25                       ORACLE AMERICA, INC    2279          206
26                        A.T. KEARNEY, INC.    2167           52
27    MCKINSEY & COMPANY, INC. UNITED STATES    2166          274
28               DXC TECHNOLOGY SERVICES LLC    2153          185
29               MENTOR GRAPHICS CORPORATION    2144           90
30                     DELOITTE & TOUCHE LLP    2108          669
31             UBS BUSINESS SOLUTIONS US LLC    1874          231
32                             WORKDAY, INC.    1738           93
33         TATA CONSULTANCY SERVICES LIMITED    1719         1494
34       CGI TECHNOLOGIES AND SOLUTIONS INC.    1652          187
35                     CAPGEMINI AMERICA INC    1617          654
36                           IBM CORPORATION    1616         1616
37                     GILEAD SCIENCES, INC.    1594           97
38                         AKT AMERICA, INC.    1563           30
39                 AMAZON WEB SERVICES, INC.    1541          785
40                     QUALCOMM INCORPORATED    1491           38
41                             ACCENTURE LLP    1414         1091
42                           INFORMATICA LLC    1389           86
43                       MPHASIS CORPORATION    1380           70
44                 WAL-MART ASSOCIATES, INC.    1361         1361
45                                HGST, INC.    1358           58
46                               WAYFAIR LLC    1334          223
47                             EXPEDIA, INC.    1254          233
48            Quest Diagnostics Incorporated    1239           27
49                                      AT&T    1207          669
50                              PAYPAL, INC.    1197          645

As can be seen, many of the values for EMPLOYER_NAME2 are the same as EMPLOYER_NAME in the initial table in this section. However, the consulting companies generally have fewer workers than before since many of them are assumedly working at client companies. The number of workers for the major tech companies may be slightly higher or lower, depending on how many consultants they may have on site versus employees who may be temporarily lent out to client companies.

In fact, the 48th and 49th items (Quest and AT&T) are remote sites. Change the select list that reads "All Sites" that's just above "Search WORKSITE CITY" to "Remote Sites Only". This will output a table of which the following is the top 50 "remote sites" in FY 2019, sorted by Total Workers:

                              EMPLOYER_NAME2 WORKERS APPLICATIONS
1             Quest Diagnostics Incorporated    1239           27
2                                       AT&T    1207          669
3                                Apple, Inc.     928          928
4                                Wells Fargo     916          706
5                                 Apple Inc.     843          428
6                                WELLS FARGO     825          426
7                         Ford Motor Company     743          689
8                                    Verizon     736          664
9                                    Comcast     670          549
10                                  PNC Bank     631          176
11                                       CVS     618          150
12  American Express Travel Related Services     591          591
13                       Synchrony Financial     578          155
14                          American Express     574          522
15                           JP MORGAN CHASE     565          181
16                               Capital One     562          502
17                         AT&T Services Inc     495          481
18                       Cisco Systems, Inc.     482          251
19                                Fannie Mae     477          291
20                      Fidelity Investments     452          398
21         State Street Bank & Trust Company     435          111
22                  Capital One Services LLC     418          123
23                                       N/A     404          116
24                         Johnson & Johnson     388          189
25              Aetna Life Insurance Company     378          378
26                     Microsoft Corporation     371          262
27  Forum Capital Markets LLC (dba Wells Far     356          145
28                       AT&T Services, Inc.     351          291
29                                   VERIZON     344          334
30             FedEx Corporate Services Inc.     331           87
31                         Kaiser Permanente     314          240
32                                 Apple Inc     314          282
33             Cigna Corporate Services, LLC     314           73
34                                Citi Group     312          312
35                           BANK OF AMERICA     306          214
36                            CHARLES SCHWAB     302          182
37       Metropolitan Life Insurance Company     297          297
38                         Cisco Systems Inc     296          281
39                     MICROSOFT CORPORATION     289           82
40            FedEx Corporate Services, Inc.     287          287
41                CHARLES SCHWAB & CO., INC.     285          261
42        SOUTHERN CALIFORNIA EDISON COMPANY     284          258
43                        THE BOEING COMPANY     284          164
44                                   Walmart     282          226
45    The PNC Financial Services Group, Inc.     278           27
46         The Capital Group Companies, Inc.     277          269
47                                  VANGUARD     276          132
48                        FORD MOTOR COMPANY     269          184
49                                       AIG     265           93
50                Allstate Insurance Company     263          235
As can be seen, Quest and AT&T are at the top of this list. Also, note that many of the employer names are in mixed case and that there are numerous listings for the same company. For example, items 4 (Wells Fargo), 6 (WELLS FARGO), and 27(Forum Capital Markets LLC (dba Wells Far), all appear to refer to Wells Fargo. This replication is due to the fact that the client employer name comes from the original LCA form and there is no standardization of the client names. However, it is possible to search for all of the cases by entering "Wells Fargo" (without the quotes) into the text box under "Search EMPLOYER_NAME2". This will output a table of 67 items of which the following are the first 20:
 
[1] "Search CASE_STATUS for CERTIFIED"
[1] "Search EMPLOYER_NAME2 for Wells Fargo"
[1] ""
[1] "H-1B DISCLOSURE DATA, FY 2019"
[1] "(CASE_STATUS=CERTIFIED, EMPLOYER_NAME2=Wells Fargo)"
[1] ""
[1] "SUM(TOTAL_WORKERS) = 3,033"
[1] "NUMBER OF ROWS     = 64"
[1] "MEDIAN(LOW_WAGE)   = NULL"
[1] "MEAN(LOW_WAGE)     = NA"
[1] ""
                             EMPLOYER_NAME2 WORKERS APPLICATIONS
1                               Wells Fargo     916          706
2                               WELLS FARGO     825          426
3  Forum Capital Markets LLC (dba Wells Far     356          145
4                     Wells Fargo & Company     247          245
5                          Wells Fargo Bank     208           78
6                          WELLS FARGO BANK      82           55
7                    Wells Fargo Bank, N.A.      79           21
8                    WELLS FARGO BANK, N.A.      74           20
9  Forum Capital Markets, LLC (dba Wells Fa      41           12
10  Forum Capital Markets LLC (Wells Fargo)      33            4
11                   Wells Fargo Bank  N.A.      30            2
12                    Wells Fargo Bank N.A.      25           11
13                    Wells Fargo Bank, N.A      25           13
14                     Wells Fargo Advisors      12           12
15                    WELLS FARGO & COMPANY       6            6
16                    WELLS FARGO BANK, N.A       5            5
17                           Wells Fargo NA       5            1
18                  Wells Fargo corporation       4            4
19                      WELLS FARGO BANK NA       3            3
20                              wells Fargo       2            2
The initial summary gives the total workers for all of these items of 3,033. Now switch the "Remote Sites Only" selected above "Search WORKSITE_CITY" to "Local Sites Only". That will output the following:
[1] "Search CASE_STATUS for CERTIFIED"
[1] "Search EMPLOYER_NAME2 for Wells Fargo"
[1] ""
[1] "H-1B DISCLOSURE DATA, FY 2019"
[1] "(CASE_STATUS=CERTIFIED, EMPLOYER_NAME2=Wells Fargo)"
[1] ""
[1] "SUM(TOTAL_WORKERS) = 230"
[1] "NUMBER OF ROWS     = 3"
[1] "MEDIAN(LOW_WAGE)   = NULL"
[1] "MEAN(LOW_WAGE)     = NA"
[1] ""
                    EMPLOYER_NAME2 WORKERS APPLICATIONS
1           WELLS FARGO BANK, N.A.     226          111
2      WELLS FARGO SECURITIES, LLC       3            3
3 WELLS FARGO FUNDS MANAGEMENT LLC       1            1
The summary shows only 230 total workers directly employed by Wells Fargo are requested. Hence, the great majority of H-1B workers requested at Wells Fargo are to be hired through consulting companies.

Change the "Local Sites Only" back to "Remote Sites Only". Now add EMPLOYER_NAME before EMPLOYER_NAME2 in the "Group by" box. One way to do this is by placing the cursor in the "Group by" box, hitting the left arrow key to move it in front of the EMPLOYER_NAME2 selection, and then select EMPLOYER_NAME. This will output a table of which the following are the first 20:

                               EMPLOYER_NAME                           EMPLOYER_NAME2 WORKERS APPLICATIONS
1                            SYNECHRON, INC. Forum Capital Markets LLC (dba Wells Far     356          145
2                 RANDSTAD TECHNOLOGIES, LLC                              WELLS FARGO     280           64
3                            INFOSYS LIMITED                    Wells Fargo & Company     220          220
4                    DELOITTE CONSULTING LLP                         Wells Fargo Bank     141           11
5                              BIRLASOFT INC                              WELLS FARGO     140            7
6                              BIRLASOFT INC                              Wells Fargo     140            7
7     COGNIZANT TECHNOLOGY SOLUTIONS US CORP                              Wells Fargo      95           95
8                                KFORCE INC.                   Wells Fargo Bank, N.A.      60            6
9                                KFORCE INC.                   WELLS FARGO BANK, N.A.      60            6
10                            NTT DATA, INC.                              WELLS FARGO      52           52
11                       MPHASIS CORPORATION                              WELLS FARGO      51            3
12                           SYNECHRON, INC. Forum Capital Markets, LLC (dba Wells Fa      41           12
13                     CAPGEMINI AMERICA INC                              Wells Fargo      38           37
14  MASTECH DIGITAL TECHNOLOGIES, INC., A MA                              Wells Fargo      36            6
15                   EUCLID INNOVATIONS INC.                              Wells Fargo      35            2
16                           SYNECHRON, INC.  Forum Capital Markets LLC (Wells Fargo)      33            4
17                           SYNECHRON, INC.                              Wells Fargo      32           32
18                  PERSISTENT SYSTEMS, INC.                              WELLS FARGO      32           32
19                             DIVERSANT LLC                              Wells Fargo      31           31
20                               KFORCE INC.                         WELLS FARGO BANK      30            3
In the above table, EMPLOYER_NAME shows the consulting company and EMPLOYER_NAME2 is the exact name by which Wells Fargo was specified as the client company. As can be seen, Wells Fargo seems to be requesting H-1B workers from a number of different consulting firms. The data could be searched further to see what types of employees are generally contracted from which consulting firms.

As previously mentioned, this app does some cleaning of EMPLOYER_NAME2 by default. To see its effect, change the select list above "Ignore in Employer" from "Clean None" back to the default "Clean EMPLOYER_NAME2". This will output a table of 31 items of which the following are the first 10:

[1] "Search CASE_STATUS for CERTIFIED"
[1] "Search EMPLOYER_NAME2 for Wells Fargo"
[1] ""
[1] "H-1B DISCLOSURE DATA, FY 2019"
[1] "(CASE_STATUS=CERTIFIED, EMPLOYER_NAME2=Wells Fargo)"
[1] ""
[1] "SUM(TOTAL_WORKERS) = 3,033"
[1] "NUMBER OF ROWS     = 29"
[1] "MEDIAN(LOW_WAGE)   = NULL"
[1] "MEAN(LOW_WAGE)     = NA"
[1] ""
                             EMPLOYER_NAME2 WORKERS APPLICATIONS
1                               WELLS FARGO    2559         1621
2  FORUM CAPITAL MARKETS LLC (DBA WELLS FAR     397          157
3   FORUM CAPITAL MARKETS LLC (WELLS FARGO)      33            4
4                      WELLS FARGO ADVISORS      13           13
5                    WELLS FARGO SECURITIES       3            3
6             WELLS FARGO COMMUNITY BANKING       2            2
7                 WELLS FARGO/TALENT BRIDGE       2            2
8                     WELLS FARGO BROKERAGE       2            2
9                  THREE WELLS FARGO CENTER       2            2
10               WELLS FARGO/DJ DORAN JONES       1            1
As can be seen, most of the 3,033 workers for Wells Fargo are now in the first group. Blanking out the "Search EMPLOYER_NAME2" box and setting the "Group by" box to just "EMPLOYER_NAME2" will output a table of client companies with cleaned values of EMPLOYER_NAME2 of which the following are the first 50:
                              EMPLOYER_NAME2 WORKERS APPLICATIONS
1                                      APPLE    2708         2218
2                                WELLS FARGO    2559         1621
3                                       AT&T    2545         1775
4                           AMERICAN EXPRESS    1909         1710
5                              CISCO SYSTEMS    1577         1032
6                                CAPITAL ONE    1358          996
7                          QUEST DIAGNOSTICS    1294           81
8                                  CITIGROUP    1233          849
9                                 FORD MOTOR    1174          913
10                                       PNC    1165          349
11                                    ANTHEM    1148         1028
12                                   VERIZON    1136         1042
13                            CHARLES SCHWAB    1061          610
14                                     FEDEX    1052          659
15                                   COMCAST    1031          819
16                                 MICROSOFT     832          508
17                           JP MORGAN CHASE     829          434
18                                    GOOGLE     768          629
19                                      NIKE     759          555
20                       SYNCHRONY FINANCIAL     755          294
21                         JOHNSON & JOHNSON     697          430
22                      FIDELITY INVESTMENTS     636          573
23                               CATERPILLAR     619          566
24                                       CVS     618          150
25                           BANK OF AMERICA     614          504
26                                FANNIE MAE     606          387
27                                     CIGNA     587          273
28                                   WALMART     585          480
29                    CHARTER COMMUNICATIONS     536          428
30                           UNITED AIRLINES     532          418
31                                    HUMANA     493          457
32    UNITED SERVICES AUTOMOBILE ASSOCIATION     487          321
33                          GENERAL ELECTRIC     484          285
34                                    BOEING     484          279
35                                    KROGER     479          439
36                SOUTHERN CALIFORNIA EDISON     475          325
37                            MORGAN STANLEY     472          428
38                 STATE STREET BANK & TRUST     452          125
39                                CITI GROUP     441          343
40                HEWLETT PACKARD ENTERPRISE     430          175
41                          VERIZON WIRELESS     428          242
42                                   CUMMINS     423          362
43                                  T-MOBILE     418          385
44                                  VANGUARD     415          261
45                            VANGUARD GROUP     413          261
46                                       N/A     408          120
47                                CVS HEALTH     406          383
48  FORUM CAPITAL MARKETS LLC (DBA WELLS FAR     397          157
49                      AETNA LIFE INSURANCE     396          396
50                                  CONDUENT     395          205
Note that about 17 of these 50 companies appear to be financial companies. This is not that surprising given a recent article in the Economist Magazine titled, Core elements of the global banking industry are moving to India.

The details of the disclosure data can be examined by removing the grouping. For example, entering "Wells Fargo" (without the quotes) into the "Search EMPLOYER_NAME2" box amd removing all items from the "Group by" selection list will output the individual application records for workers requested to work at Well Fargo of which the following are the first 20:

[1] "Search CASE_STATUS for CERTIFIED"
[1] "Search EMPLOYER_NAME2 for Wells Fargo"
[1] "Sort by TOTAL_WORKERS, Descending"
[1] ""
[1] "H-1B DISCLOSURE DATA, FY 2019"
[1] "(CASE_STATUS=CERTIFIED, EMPLOYER_NAME2=Wells Fargo)"
[1] ""
[1] "SUM(TOTAL_WORKERS) = 3,033"
[1] "NUMBER OF ROWS     = 1,826"
[1] "MEDIAN(LOW_WAGE)   = 88,670"
[1] "MEAN(LOW_WAGE)     = 90,897"
[1] ""
    CASE_STATUS                            EMPLOYER_NAME                                JOB_TITLE WORKERS PW_WAGE_LEVEL WAGE_RATE_FROM WAGE_PW    WORKSITE_CITY STATE
1     CERTIFIED                          SYNECHRON, INC.                               QA ANALYST      30           OES       64000.00  1.0072        Charlotte    NC
2     CERTIFIED                          SYNECHRON, INC.                       SOFTWARE DEVELOPER      30           OES       89000.00  1.0037        Charlotte    NC
3     CERTIFIED                          SYNECHRON, INC.                       SOFTWARE DEVELOPER      30           OES       89000.00  1.0037        Charlotte    NC
4     CERTIFIED                          SYNECHRON, INC.                       SOFTWARE DEVELOPER      30           OES       89000.00  1.0037        Charlotte    NC
5     CERTIFIED                          SYNECHRON, INC.                       SOFTWARE DEVELOPER      30           OES       89000.00  1.0037        Charlotte    NC
6     CERTIFIED                          SYNECHRON, INC.                       SOFTWARE DEVELOPER      30           OES       89000.00  1.0037        Charlotte    NC
7     CERTIFIED                          SYNECHRON, INC.                QUALITY ASSURANCE ANALYST      30           OES       64000.00  1.0072        Charlotte    NC
8     CERTIFIED                      MPHASIS CORPORATION                   SOFTWARE PROGRAMMER II      25           OES       87714.00  1.0000    SAN FRANCISCO    CA
9     CERTIFIED                      MPHASIS CORPORATION                   SOFTWARE PROGRAMMER II      25           OES       87714.00  1.0000    SAN FRANCISCO    CA
10    CERTIFIED                            BIRLASOFT INC                         SYSTEMS ANALYSTS      20           OES       60382.00  1.0000            MACON    GA
11    CERTIFIED                            BIRLASOFT INC                        SOFTWARE ENGINEER      20           OES       75483.00  1.0000          DANBURY    CT
12    CERTIFIED                            BIRLASOFT INC                        SOFTWARE ENGINEER      20           OES       75483.00  1.0000          DANBURY    CT
13    CERTIFIED                            BIRLASOFT INC                        SOFTWARE ENGINEER      20           OES       75483.00  1.0000          DANBURY    CT
14    CERTIFIED                            BIRLASOFT INC COMPUTER AND INFORMATION SYSTEMS MANAGER      20           OES      113152.00  1.0000          DANBURY    CT
15    CERTIFIED                            BIRLASOFT INC                        SOFTWARE ENGINEER      20           OES       75483.00  1.0000          DANBURY    CT
16    CERTIFIED                            BIRLASOFT INC                         SYSTEMS ANALYSTS      20           OES       75837.00  1.0000          CHICAGO    IL
17    CERTIFIED                          SYNECHRON, INC.                         BUSINESS ANALYST      20           OES       64000.00  1.0072        Charlotte    NC
18    CERTIFIED                            BIRLASOFT INC                         SYSTEMS ANALYSTS      20           OES       75837.00  1.0000          Chicago    IL
19    CERTIFIED                            BIRLASOFT INC                        SOFTWARE ENGINEER      20           OES       80912.00  1.0000          Chicago    IL
20    CERTIFIED                            BIRLASOFT INC                        SOFTWARE ENGINEER      20           OES       78125.00  1.0000       Southfield    MI
As can be seen, the great majority of the requested jobs seem to be software-related. In any event, it should be noted that all of the above data for FY 2019 was obtained from the file named H-1B_FY2019.xlsx linked to at this page.

States and Territories, sorted by Workers (Initial Approvals plus Continuing Approvals), 2018

   Employer Records  I.A. I.D.  C.A. C.D. Workers I.A.R C.A.R T.A.R
1        CA   10871 15642 3498 47774 3367   63416  81.7  93.4  90.2
2        TX    5241  6942 4733 31679 8302   38621  59.5  79.2  74.8
3        NJ    3714  8896 5163 27688 4585   36584  63.3  85.8  79.0
4        NY    6952  9442 1690 16224 1234   25666  84.8  92.9  89.8
5        IL    2535  3779 2442 14738 2391   18517  60.7  86.0  79.3
6        MA    2666  5048  875 11349 1138   16397  85.2  90.9  89.1
7        WA    1061  5341  368 10208  459   15549  93.6  95.7  94.9
8        PA    1872  3583  893 10709 1877   14292  80.0  85.1  83.8
9        MD    1154  2150  473 11154 2014   13304  82.0  84.7  84.3
10       MI    1792  2911 1063  8542 1330   11453  73.3  86.5  82.7
11       VA    1982  2995 1526  7814  979   10809  66.2  88.9  81.2
12       FL    2368  2129  940  6079 1054    8208  69.4  85.2  80.5
13       GA    1677  2014 1132  6146 1145    8160  64.0  84.3  78.2
14       NC     969  1584  388  5527  670    7111  80.3  89.2  87.0
15       OH    1084  1295  427  3585  559    4880  75.2  86.5  83.2
16       AZ     620  1765  161  2925  154    4690  91.6  95.0  93.7
17       TN     485  1224  114  2445  131    3669  91.5  94.9  93.7
18       CT     735  1162  251  2264  207    3426  82.2  91.6  88.2
19       MN     679   876  152  2336  136    3212  85.2  94.5  91.8
20       MO     602   837  221  2101  189    2938  79.1  91.7  87.8
21       WI     468   552   80  1721  112    2273  87.3  93.9  92.2
22       CO     587   685  113  1437  112    2122  85.8  92.8  90.4
23       AR     178   539   96  1119   64    1658  84.9  94.6  91.2
24       IN     470   557   73   945   81    1502  88.4  92.1  90.7
25       DE     229   440  159  1026  106    1466  73.5  90.6  84.7
26       DC     576   542   82   854   64    1396  86.9  93.0  90.5
27       NE     205   314   52   904   59    1218  85.8  93.9  91.6
28       KY     281   297   52   798   99    1095  85.1  89.0  87.9
29       IA     242   421  162   652   66    1073  72.2  90.8  82.5
30       KS     269   329   79   734   72    1063  80.6  91.1  87.6
31       UT     305   354   66   659   44    1013  84.3  93.7  90.2
32       OR     251   247   47   621   41     868  84.0  93.8  90.8
33       SC     317   392  108   400   32     792  78.4  92.6  85.0
34       LA     266   330   45   432   30     762  88.0  93.5  91.0
35       AL     270   318   29   416   28     734  91.6  93.7  92.8
36       RI     117   190   15   491   36     681  92.7  93.2  93.0
37       OK     248   242   64   339   18     581  79.1  95.0  87.6
38       NH     162   198   60   327   41     525  76.7  88.9  83.9
39       NM     118   199   98   214   27     413  67.0  88.8  76.8
40       NV     215   137   34   272   27     409  80.1  91.0  87.0
41       ID      47   148    8   217   11     365  94.9  95.2  95.1
42       ME      71   121    4   164   14     285  96.8  92.1  94.1
43       VT      59    61    8   223    6     284  88.4  97.4  95.3
44       MS     107   107   18   166    3     273  85.6  98.2  92.9
45       WV      81    90    8   123    7     213  91.8  94.6  93.4
46       SD      47    82    7   115    5     197  92.1  95.8  94.3
47       ND      64    74    7    82    5     156  91.4  94.3  92.9
48       HI      68    67    6    87    5     154  91.8  94.6  93.3
49       GU      84    52   17    90    8     142  75.4  91.8  85.0
50       MP      76    92   50    36    4     128  64.8  90.0  70.3
51       PR      45    27   15    25    7      52  64.3  78.1  70.3
52       AK      22    17    1    28    1      45  94.4  96.6  95.7
53       WY      18    24    2    18    3      42  92.3  85.7  89.4
54       MT      24    22    3    17    3      39  88.0  85.0  86.7
55       VI      11     4    2    17    3      21  66.7  85.0  80.8
56                7     3    1    14    0      17  75.0 100.0  94.4
57       AE       2     0    0     2    0       2   NaN 100.0 100.0

Percent of Computer Software Developers by State, grouped by CITIZENSHIP and SEX, sorted by Non.citizen_Male, 2017

Computer software developers (229): 2017, grouped by CTZNSHP and SEX_M_F (percent)

   Year STATE   Count Non.ctzn_M Non.ctzn_F Naturlzd_M Naturlzd_F U.S._Brn_M U.S._Brn_F
1  2017    WY     877       33.4        0.0        0.0        0.0       52.9       13.7
2  2017    WA  94,231       29.6        6.8        8.4        2.1       46.9        6.1
3  2017    NJ  70,269       28.7        7.4       17.6        7.1       33.1        6.2
4  2017    CA 340,950       25.9        7.7       15.7        5.4       38.1        7.1
5  2017    IL  66,867       20.4        3.3       11.9        3.9       50.8        9.8
6  2017    RI   5,858       19.8        3.1        3.1        2.0       61.4       10.6
7  2017    NC  54,871       19.1        4.4        8.0        2.8       53.2       12.4
8  2017    MI  41,988       19.1        3.9        9.1        2.3       58.6        6.9
9  2017    CT  18,030       19.0        3.3        8.1        3.1       49.1       17.4
10 2017    NV   6,256       18.0        0.0       14.2        0.0       58.0        9.8
11 2017    TX 133,351       16.8        5.6       12.8        4.0       51.7        9.1
12 2017    AR   9,064       16.5        6.4        1.6        2.6       63.4        9.5
13 2017    GA  51,081       16.5        6.3       11.1        4.5       51.8        9.8
14 2017    DE   3,662       16.0        5.3        6.1        8.6       58.6        5.5
15 2017    OK   9,088       16.0        1.9        5.4        2.4       61.2       13.1
16 2017    KS  14,361       15.7        2.5        4.7        1.1       64.0       11.9
17 2017    IN  20,973       15.7        6.2        3.3        2.3       59.5       12.9
18 2017    NH  13,140       14.6        2.8        9.9        1.2       58.0       13.4
19 2017    FL  73,765       14.1        3.8       11.1        4.8       52.8       13.3
20 2017    NY  92,198       14.1        2.9       14.3        3.4       54.0       11.2
21 2017    MA  70,723       13.9        3.2       14.7        5.1       48.4       14.6
22 2017    OH  44,869       13.4        2.0        6.1        2.9       63.9       11.7
23 2017    PA  62,516       12.9        2.6        8.1        1.6       63.3       11.4
24 2017    VA  78,219       12.8        3.7       14.8        4.5       49.6       14.7
25 2017    WI  29,884       12.4        7.6        5.3        1.4       57.7       15.5
26 2017    AZ  28,209       12.4        2.9        7.2        3.5       62.8       11.2
27 2017    OR  25,863       11.7        3.4        6.4        2.6       59.0       16.9
28 2017    MN  40,479       10.7        4.9        9.1        1.3       64.9        9.0
29 2017    HI   2,935        9.9        0.0        0.0        4.2       75.0       10.9
30 2017    TN  22,638        9.8        5.9        5.4        0.4       58.4       20.0
31 2017    NE  10,468        9.2        4.3        4.5        2.7       63.5       15.8
32 2017    MD  58,240        8.9        2.2       10.7        4.4       49.8       24.0
33 2017    MO  24,758        7.9        3.0        5.1        1.1       64.8       18.1
34 2017    LA   7,395        7.6        3.0        1.9        1.7       71.0       14.9
35 2017    DC   6,818        7.6        2.4        7.3        1.9       48.3       32.5
36 2017    CO  50,474        6.8        0.6        5.8        2.6       71.8       12.3
37 2017    IA  14,940        6.8        2.4        7.1        0.0       66.0       17.8
38 2017    SC  14,240        6.3        0.8        3.1        0.0       73.7       16.2
39 2017    KY  14,512        6.3        1.2        4.3        0.2       62.6       25.5
40 2017    UT  27,182        5.9        1.8        2.5        1.1       78.4       10.3
41 2017    MS   4,546        3.4        1.8        3.3        0.0       63.6       27.8
42 2017    AL  16,830        3.4        0.8        3.5        0.9       63.8       27.7
43 2017    ME   3,541        2.2        0.0        3.0        0.0       71.1       23.7
44 2017    ID   5,281        1.9        2.3        1.4        5.0       80.5        8.8
45 2017    AK     806        0.0        0.0        0.0        0.0      100.0        0.0
46 2017    MT   2,241        0.0        0.0        0.0        0.0       82.2       17.8
47 2017    ND   1,623        0.0        0.0        0.0        0.0       78.7       21.3
48 2017    NM   5,047        0.0        0.0       16.4        0.0       60.0       23.6
49 2017    SD   1,739        0.0        0.0        0.0        0.0       88.7       11.3
50 2017    VT   2,563        0.0        0.0        8.7        0.0       74.5       16.8
51 2017    WV   2,847        0.0        0.0        2.1        0.0       73.6       24.3

URL parameters (short)=
?STATE=&geo=STATE&occ=Computer%20software%20developers%20(229)&group=CTZNSHP|SEX_M_F&sortn=4&mincount=0

Top 50 Counties by Percent of Computer Software Developers who are Non-Citizen Males, grouped by CITIZENSHIP and SEX, 2017

Computer software developers (229): 2017, grouped by CTZNSHP and SEX_M_F, 5000 or more workers (percent)

   Year                    COUNTY   Count Non.ctzn_M Non.ctzn_F Naturlzd_M Naturlzd_F U.S._Brn_M U.S._Brn_F
1  2017          Hudson County NJ   8,836       59.4       18.5        6.0        3.1       11.3        1.8
2  2017       Middlesex County NJ  15,402       41.0        6.6       24.5        9.3       13.9        4.7
3  2017     Mecklenburg County NC  10,694       40.6        7.0        2.9        3.5       36.3        9.7
4  2017     Santa Clara County CA  90,412       38.8       10.6       17.6        6.0       22.4        4.5
5  2017         Alameda County CA  39,393       38.5        9.4       16.0        6.1       25.1        4.9
6  2017            Lake County IL   6,757       37.4        4.6       17.0        5.8       30.9        4.5
7  2017            King County WA  72,589       34.0        8.3        8.4        1.9       41.8        5.6
8  2017       Snohomish County WA   7,859       33.6        4.1        7.5        3.9       45.8        5.0
9  2017         Oakland County MI  14,694       33.5        6.4       11.4        2.9       43.5        2.3
10 2017          DuPage County IL   9,767       31.5        6.6       13.9        4.0       38.6        5.4
11 2017        New York County NY  13,179       31.1        3.5        7.9        1.6       47.5        8.3
12 2017    Hillsborough County FL   7,446       28.3        7.7       10.8        0.7       41.2       11.3
13 2017          Dallas County TX  16,730       28.2        7.2       14.8        1.6       41.4        6.7
14 2017          Collin County TX  19,963       27.8        8.7       12.6        6.4       36.7        7.8
15 2017        Hartford County CT   6,529       26.5        1.3        9.8        6.0       35.7       20.8
16 2017       San Mateo County CA  19,108       25.9       16.4       16.2        7.3       30.9        3.4
17 2017          Denton County TX   7,218       24.0        6.2       19.3        5.8       37.7        7.1
18 2017           Duval County FL   6,645       23.4        5.7       13.9        9.4       38.4        9.3
19 2017      Washington County OR  11,096       22.8        5.9        6.5        4.4       44.6       15.8
20 2017      Sacramento County CA   9,603       22.4        1.2       11.4        2.2       45.7       17.0
21 2017         Johnson County KS   8,509       22.0        2.5        7.0        1.9       56.0       10.6
22 2017          Bergen County NJ   5,208       21.4        6.0       19.7       11.9       38.3        2.7
23 2017         Suffolk County MA   7,205       21.2        0.0       16.6        9.6       42.2       10.5
24 2017        Monmouth County NJ   5,383       20.9        2.6       11.1        3.5       55.5        6.4
25 2017          Orange County CA  29,277       20.0        4.2       20.2        6.6       42.6        6.4
26 2017            Cobb County GA   6,891       19.8        0.0       17.4        1.6       56.3        4.9
27 2017         Suffolk County NY   6,851       19.6        2.9       18.0        1.9       43.0       14.6
28 2017         Broward County FL   7,696       19.2       11.0       16.3        9.6       31.1       12.9
29 2017   San Francisco County CA  25,559       18.9        5.4        7.7        2.9       52.8       12.3
30 2017       San Diego County CA  27,569       18.6        6.2       16.2        7.6       42.6        8.9
31 2017            Cook County IL  28,419       18.6        2.9       11.9        2.9       53.0       10.7
32 2017      Williamson County TX   9,423       18.4        7.0       19.4        2.9       45.0        7.3
33 2017          Harris County TX  16,997       17.8        3.5       17.9        4.0       45.5       11.3
34 2017     Los Angeles County CA  46,009       17.8        5.2       14.3        4.8       49.7        8.2
35 2017            Wake County NC  20,160       17.5        4.3        9.6        3.6       51.2       13.7
36 2017    Contra Costa County CA  13,197       17.5        7.9       27.2        7.9       33.0        6.6
37 2017       St. Louis County MO   6,718       17.4        8.4        5.6        1.8       53.6       13.2
38 2017      Montgomery County MD  15,992       17.4        3.0       19.4        9.7       34.3       16.2
39 2017         Loudoun County VA  12,867       17.3        9.9       22.7        5.5       35.7        8.9
40 2017        Cuyahoga County OH   6,256       16.5        0.0       10.2        2.7       59.4       11.1
41 2017      Montgomery County PA   7,636       16.3        2.9       18.1        0.9       51.8       10.0
42 2017        Franklin County OH  10,146       15.6        7.4        6.4        4.7       58.6        7.4
43 2017          Queens County NY  12,032       15.0        1.1       26.9        8.0       44.9        4.2
44 2017        Hennepin County MN  14,438       14.7        6.8        4.5        1.5       66.5        6.0
45 2017            Dane County WI  10,832       14.6       15.1        4.2        2.3       45.7       18.2
46 2017          Monroe County NY   6,009       14.5        3.3        4.3        2.2       55.3       20.4
47 2017         Chester County PA   7,853       14.3        3.4       14.8        1.7       61.7        4.0
48 2017        Maricopa County AZ  22,527       14.2        3.6        7.2        4.4       59.2       11.3
49 2017          Howard County MD   7,434       13.7        5.1       15.4        7.3       37.9       20.6
50 2017        Gwinnett County GA   7,028       13.1        5.7       18.3        6.6       48.0        8.3

URL parameters (short)=
?STATE=&geo=COUNTY&occ=Computer%20software%20developers%20(229)&group=CTZNSHP|SEX_M_F&sortn=4

Top 50 Counties by Highest Percent of Computer Software Developers who are Between 25 and 34 Years of Age, 2017

Computer software developers (229): 2017, grouped by AGE10, 5000 or more workers (percent)

   Year                    COUNTY   Count  0-24  25-34  35-44  45-54  55-64  65-99
1  2017            Dane County WI  10,832   5.4   60.1   20.0    1.5   10.1    2.9
2  2017          Hudson County NJ   8,836   4.3   55.8   33.6    5.7    0.7    0.0
3  2017   San Francisco County CA  25,559  10.4   54.7   25.8    6.0    2.4    0.7
4  2017        New York County NY  13,179   9.5   54.2   26.9    4.9    2.8    1.7
5  2017     Mecklenburg County NC  10,694   5.8   54.0   20.6   11.8    6.1    1.7
6  2017       Arlington County VA   5,053   6.2   51.1   24.4   14.9    1.1    2.2
7  2017   District of Columbia DC   6,818   9.3   46.2   22.2    8.7    9.6    3.9
8  2017            King County WA  72,589   7.9   43.9   28.0   13.8    5.4    1.0
9  2017         Oakland County MI  14,694   4.4   43.7   25.4   17.0    9.5    0.0
10 2017       San Mateo County CA  19,108   6.3   43.2   27.4   14.0    6.6    2.6
11 2017       Allegheny County PA  10,960   6.9   43.0   23.8   16.6    8.0    1.7
12 2017           Bexar County TX   8,500   8.5   42.8   21.8   13.8   13.1    0.0
13 2017           Kings County NY  14,519  12.3   41.8   25.9   11.9    3.6    4.5
14 2017           Duval County FL   6,645   0.6   40.5   23.3   21.7   13.2    0.6
15 2017          Travis County TX  21,567   5.9   40.3   23.6   17.6   10.1    2.6
16 2017         Suffolk County MA   7,205  17.5   39.7   26.2    8.2    8.4    0.0
17 2017     Santa Clara County CA  90,412   8.3   39.4   27.6   16.7    7.3    0.6
18 2017         Alameda County CA  39,393   4.1   38.9   30.6   18.9    6.2    1.3
19 2017       Multnomah County OR   6,378   3.0   37.9   35.1   16.9    5.2    1.9
20 2017            Cook County IL  28,419   2.9   36.5   31.4   15.4   10.9    2.8
21 2017          Dallas County TX  16,730   6.0   35.9   23.4   19.2   12.4    3.1
22 2017       Snohomish County WA   7,859   2.7   35.6   30.4   16.9   14.4    0.0
23 2017      Montgomery County PA   7,636   1.5   33.7   30.4   21.9   12.6    0.0
24 2017         Johnson County KS   8,509   3.1   33.5   31.8   17.9   11.6    2.1
25 2017      Montgomery County MD  15,992   4.6   33.4   20.0   21.6   19.6    0.8
26 2017          Ramsey County MN   6,373   1.4   33.2   28.2   20.2   12.5    4.4
27 2017          Orange County FL   8,688   7.5   33.1   28.0   14.5   16.3    0.7
28 2017        Hennepin County MN  14,438   2.8   33.0   25.5   26.4   11.8    0.4
29 2017        Franklin County OH  10,146   4.6   32.7   33.9   17.2   10.5    1.2
30 2017        Hartford County CT   6,529   4.7   32.7   22.6   28.9   11.1    0.0
31 2017            Utah County UT   8,735  16.0   32.4   19.0   22.4    8.5    1.6
32 2017         Suffolk County NY   6,851   4.5   32.1   23.6   23.6   13.7    2.4
33 2017     Los Angeles County CA  46,009   3.8   32.1   29.1   18.5   13.3    3.1
34 2017       San Diego County CA  27,569   4.2   32.1   30.5   19.9   11.9    1.4
35 2017    Hillsborough County FL   7,446   4.2   31.9   27.9   19.1   10.2    6.8
36 2017          Queens County NY  12,032   9.0   31.4   28.5   13.3   12.0    5.7
37 2017        Cuyahoga County OH   6,256  12.1   31.2   20.1   16.1   16.0    4.5
38 2017          DuPage County IL   9,767   3.9   30.6   27.0   23.3   11.5    3.7
39 2017         Broward County FL   7,696   1.0   30.0   28.4   18.1   16.1    6.4
40 2017          Orange County CA  29,277   4.6   29.7   27.4   24.6   10.6    3.1
41 2017        Monmouth County NJ   5,383   1.5   29.1   22.8   12.1   28.5    5.9
42 2017          Monroe County NY   6,009   9.3   28.9   19.5   28.8   13.5    0.0
43 2017          Collin County TX  19,963   4.5   28.7   31.5   22.9    8.9    3.5
44 2017          Harris County TX  16,997   5.3   27.9   34.3   17.3   13.2    2.0
45 2017        Maricopa County AZ  22,527   7.2   27.3   32.2   20.2    9.0    4.1
46 2017           Wayne County MI   5,581   4.4   26.8   40.6   17.9   10.3    0.0
47 2017        Pinellas County FL   5,742   3.5   26.5    9.8   26.2   28.8    5.1
48 2017    Anne Arundel County MD   6,835   0.0   25.5   27.2   19.5   22.9    5.0
49 2017                      (NA) 407,221   6.7   25.3   25.6   23.7   15.4    3.2
50 2017      Sacramento County CA   9,603   7.2   25.2   33.4   21.2    9.4    3.6

URL parameters (short)=
?STATE=&geo=COUNTY&occ=Computer%20software%20developers%20(229)&group=AGE10&sortn=5

Top 50 Counties by Lowest Percent of Computer Software Developers who are Between 55 and 64 Years of Age, 2017

Computer software developers (229): 2017, grouped by AGE10 (percent)

   Year                    COUNTY   Count x0.24 x25.34 x35.44 x45.54 x55.64 x65.99
1  2017          Hudson County NJ   8,836   4.3   55.8   33.6    5.7    0.7    0.0
2  2017       Arlington County VA   5,053   6.2   51.1   24.4   14.9    1.1    2.2
3  2017   San Francisco County CA  25,559  10.4   54.7   25.8    6.0    2.4    0.7
4  2017        New York County NY  13,179   9.5   54.2   26.9    4.9    2.8    1.7
5  2017           Kings County NY  14,519  12.3   41.8   25.9   11.9    3.6    4.5
6  2017       Middlesex County NJ  15,402   4.7   21.7   43.3   26.2    3.7    0.4
7  2017      Williamson County TX   9,423   7.4   24.3   38.6   23.8    4.0    2.0
8  2017       Multnomah County OR   6,378   3.0   37.9   35.1   16.9    5.2    1.9
9  2017            King County WA  72,589   7.9   43.9   28.0   13.8    5.4    1.0
10 2017     Mecklenburg County NC  10,694   5.8   54.0   20.6   11.8    6.1    1.7
11 2017         Alameda County CA  39,393   4.1   38.9   30.6   18.9    6.2    1.3
12 2017       San Mateo County CA  19,108   6.3   43.2   27.4   14.0    6.6    2.6
13 2017     Santa Clara County CA  90,412   8.3   39.4   27.6   16.7    7.3    0.6
14 2017         Loudoun County VA  12,867   2.5   24.3   37.5   26.9    7.5    1.4
15 2017      Washington County OR  11,096   6.7   24.6   36.4   23.1    7.6    1.7
16 2017       Allegheny County PA  10,960   6.9   43.0   23.8   16.6    8.0    1.7
17 2017          Nassau County NY   6,180   7.7   12.5   33.0   32.6    8.1    6.1
18 2017         Suffolk County MA   7,205  17.5   39.7   26.2    8.2    8.4    0.0
19 2017            Utah County UT   8,735  16.0   32.4   19.0   22.4    8.5    1.6
20 2017          Collin County TX  19,963   4.5   28.7   31.5   22.9    8.9    3.5
21 2017        Maricopa County AZ  22,527   7.2   27.3   32.2   20.2    9.0    4.1
22 2017          Bergen County NJ   5,208   6.6   22.3   34.1   23.8    9.1    4.1
23 2017      Sacramento County CA   9,603   7.2   25.2   33.4   21.2    9.4    3.6
24 2017         Oakland County MI  14,694   4.4   43.7   25.4   17.0    9.5    0.0
25 2017   District of Columbia DC   6,818   9.3   46.2   22.2    8.7    9.6    3.9
26 2017       Fort Bend County TX   5,700   0.0    6.5   37.4   44.4    9.7    2.1
27 2017       Salt Lake County UT  11,825   7.5   20.4   43.3   17.4   10.0    1.3
28 2017          Travis County TX  21,567   5.9   40.3   23.6   17.6   10.1    2.6
29 2017            Dane County WI  10,832   5.4   60.1   20.0    1.5   10.1    2.9
30 2017    Hillsborough County FL   7,446   4.2   31.9   27.9   19.1   10.2    6.8
31 2017           Wayne County MI   5,581   4.4   26.8   40.6   17.9   10.3    0.0
32 2017       Riverside County CA   5,659   6.2   15.5   35.3   32.6   10.4    0.0
33 2017        Franklin County OH  10,146   4.6   32.7   33.9   17.2   10.5    1.2
34 2017          Orange County CA  29,277   4.6   29.7   27.4   24.6   10.6    3.1
35 2017            Cook County IL  28,419   2.9   36.5   31.4   15.4   10.9    2.8
36 2017        Hartford County CT   6,529   4.7   32.7   22.6   28.9   11.1    0.0
37 2017          DuPage County IL   9,767   3.9   30.6   27.0   23.3   11.5    3.7
38 2017         Johnson County KS   8,509   3.1   33.5   31.8   17.9   11.6    2.1
39 2017        Hennepin County MN  14,438   2.8   33.0   25.5   26.4   11.8    0.4
40 2017       San Diego County CA  27,569   4.2   32.1   30.5   19.9   11.9    1.4
41 2017          Queens County NY  12,032   9.0   31.4   28.5   13.3   12.0    5.7
42 2017          Dallas County TX  16,730   6.0   35.9   23.4   19.2   12.4    3.1
43 2017          Ramsey County MN   6,373   1.4   33.2   28.2   20.2   12.5    4.4
44 2017      Montgomery County PA   7,636   1.5   33.7   30.4   21.9   12.6    0.0
45 2017           Bexar County TX   8,500   8.5   42.8   21.8   13.8   13.1    0.0
46 2017          Denton County TX   7,218   2.1   21.8   37.4   23.3   13.2    2.2
47 2017           Duval County FL   6,645   0.6   40.5   23.3   21.7   13.2    0.6
48 2017          Harris County TX  16,997   5.3   27.9   34.3   17.3   13.2    2.0
49 2017     Los Angeles County CA  46,009   3.8   32.1   29.1   18.5   13.3    3.1
50 2017          Monroe County NY   6,009   9.3   28.9   19.5   28.8   13.5    0.0

URL parameters (short)=
?STATE=&geo=COUNTY&occ=Computer%20software%20developers%20(229)&group=AGE10&sortn=8&sortdir=Ascending

Optional Practical Training (OPT), STEM OPT, and Curricular Practical Training (CPT) Authorizations, 2007-2017

Optional Practical Training (OPT), STEM OPT, and Curricular Practical Training (CPT) Authorizations, 2007-2017
Annual Growth in Optional Practical Training (OPT); Science, Technology, Engineering and Mathematics (STEM) OPT; and
                 Curricular Practical Training (CPT) Authorizations, 2007 - 2017
-----------------------------------------------------------------------------------------------------------------------
Approved Employment        Count of Approved Authorizations With Employment Start Dates in Indicated Calendar Year
  Authorizations         2007     2008     2009     2010     2011     2012     2013     2014     2015     2016     2017
-------------------- -------- -------- -------- -------- -------- -------- -------- -------- -------- -------- --------
OPT                    83,077   83,029   83,489   92,316  103,656  112,962  121,994  134,315  160,623  192,841  219,635
STEM OPT*                   2    2,169    5,939    9,391   13,516   16,055   18,918   21,673   27,649   40,771   60,410
CPT                    57,679   61,430   48,765   57,629   64,105   68,767   76,541   92,792  111,472  122,920  132,796
-----------------------------------------------------------------------------------------------------------------------
*STEM OPT is a subset of OPT

Sources: U.S. Immigration and Customs Enforcement,
         SEVP publishes 2017 international student data, SEVP Data Library,
         2007 to 2017 Annual Growth in OPT, STEM OPT and CPT Authorizations
Additional OPT Data

H-1B and Related Data by State Plots
H-1B Data